The gauge group and flavor number dependence of m_V/f_{PS}

Andrey Kotov, Daniel Nogradi Kalman Szabo, Lorinc Szikszai

1905.01909 - JHEP 1905 (2019) 197 1912.04114 - PoS LATTICE2019 (2019) 237 2107.05996 - JHEP 2107 (2021) 202

Eotvos University Budapest

Context

- Strongly interacting extensions of Standard Model
- Composite Higgs $(f_0 \text{ or } \sigma)$
- Non-trivial new particle prediction: $V = \rho$ vector
- How well can $m_V = m_{\varrho}$ differentiate between models?

Electro-weak sector with symmetry breaking \rightarrow new sector of strongly interacting gauge fields and fermions

Electro-weak symmetry breaking \sim spontaneous chiral symmetry breaking

$$f_{PS} = f_{\pi} = 249 \; GeV$$

Higgs: flavor singlet scalar meson (no fine tuning problem)

Vector meson: new particle from same fermionic ingredients, so far unobserved: prediction

 m_{ϱ}/f_{π} calculable from lattice

Motivation

How well can m_{ρ} differentiate between models?

- Gauge group G, representation R, flavor number N_f
- Lattice prediction for dimensionless ratios m_{ϱ}/f_{π}
- $f_{\pi} = 249 \ GeV$, m_{ϱ} should be experimentally measured in GeV
- Main question: what is the model dependence of m_{ϱ}/f_{π} ?

Motivation

Previous lattice results in various SU(3) models:

 $m_{\varrho}/f_{\pi} \sim 8$ not much N_f or R dependence

Jin/Mawhinney 0910.3216 1304.0312

LatKMI 1302.6859

LSD 1312.5298 1601.04027 1807.08411

LatHC 0907.4562 1209.0391 1605.08750 1601.03302

But no controlled infinite volume and continuum and chiral extrapolation. (Except QCD but $m \neq 0$)

In nature: 8.4 (includes all Standard Model effects)

Goal

Fully controlled results with SU(3)

R = fund and $N_f = 2, 3, 4, 5, 6, 7, 8, 9, 10$

$$L/a \to \infty \qquad \qquad m \to 0 \qquad \qquad a \to 0$$

Note: m_{ϱ}/f_{π} in chiral limit well-defined also inside conformal window

- Finite volume effects $m_{\pi}, f_{\pi}, m_{\varrho}$
- Chiral-continuum extrapolation, results
- KSRF relation, $g_{\varrho\pi\pi}$
- Speculation inside conformal window
- General $SU(N), N_f, R$
- Conclusion

Lattice setup

SU(3) gauge group, Symanzik tree level improved gauge action, staggered stout-improved fermion action

At each $N_f = 2, 3, 4, 5, 6$: 4 lattice spacing, 4 masses for each lattice spacing: 16 points

At each $N_f = 7, 8, 9, 10$: 3 lattice spacing, 4 masses for each lattice spacing: 12 points

Finite volume effects - m_{π}, f_{π}

Exponential finite volume effects for m_{π}, f_{π}

How large does $m_{\pi}L$ needs to be to have less than 1% finite volume effect?

Simulations at fixed β, m for each N_f with at least 4 L/a

Finite volume effects - m_{π}, f_{π}

- Functional form: Gasser-Leutwyler
- Good fits, read off fit parameters
- Determine $m_{\pi}L$ such that finite volume effects are at most 1%

Finite volume effects - m_{π}, f_{π}

$$m_{\pi}L > 3.46 + 0.12N_f + 0.03N_f^2$$

For 1% finite volume effects on m_{π}, f_{π}

For example $N_f = 2$: $m_{\pi}L > 3.82$

For example $N_f = 10$: $m_{\pi}L > 7.66$

Finite volume effects - m_{ρ}

 m_{ϱ} is different: $\varrho \rightarrow \pi \pi$ resonance, need in finite volume

$$\frac{m_{\varrho}}{2m_{\pi}} < \sqrt{1 + \left(\frac{2\pi}{m_{\pi}L}\right)^2}$$

Finite volume effects from full Luscher

Fits to finite volume energy levels $E(m_{\varrho}, g_{\varrho\pi\pi}, L)$ or $E(m_{\varrho}, \Gamma_{\varrho}, L)$

If just one volume L: obtain $g_{\rho\pi\pi}$ a posteriori from KSRF relation (see later)

Check finite volume effect on m_{ϱ} a posteriori

Taste breaking

 $O(a^2)$ scaling of taste broken Goldstones from $\chi = \frac{\langle Q^2 \rangle}{V}$

 \rightarrow backup slides if interested :)

Systematics

- Volumes large enough
- Lattice spacing small enough
- Mass small enough

 \rightarrow chiral - continuum extrapolation of $m_{\varrho}Y$ and $f_{\pi}Y$ with some physical length scale Y

$$Y = w_0$$
 for $N_f = 2, ..., 6$

$$Y = \sqrt{t_0}$$
 for $N_f = 7, \dots, 10$

Chiral - continuum extrapolation

Global fit of $X = m_{\varrho}$ and $X = f_{\pi}$

$$XY = C_0 + C_1 m_\pi^2 Y^2 + C_2 \frac{a^2}{Y^2} + C_3 \frac{a^2}{Y^2} m_\pi^2 Y^2$$

 $Y = w_0$ for $N_f = 2, ..., 6$, 16 points, dof = 12

 $Y = \sqrt{t_0}$ for $N_f = 7, \dots, 10$, 12 points, dof = 8

Chiral - continuum, $N_f = 2$ 24 $\leq L/a \leq$ 36

Chiral - continuum, $N_f = 3$ 20 $\leq L/a \leq 36$

Chiral - continuum, $N_f = 4$ 20 $\leq L/a \leq$ 36

Chiral - continuum, $N_f = 5$ 20 $\leq L/a \leq$ 36

Chiral - continuum, $N_f = 6$ 20 $\leq L/a \leq$ 36

Chiral - continuum, $N_f = 7$ 24 $\leq L/a \leq 40$

Chiral - continuum, $N_f = 8$ 24 $\leq L/a \leq 40$

Chiral - continuum, $N_f = 9$ 28 $\leq L/a \leq$ 48

Chiral - continuum, $N_f = 10$ 32 $\leq L/a \leq$ 48

Chiral-continuum for ratio m_{arrho}/f_{π}

Constant fit

$$\frac{m_{\varrho}}{f_{\pi}} = 7.85(14)$$
 with $\chi^2/dof = 1.1$

Conclusion

No statistically significant N_f -dependence!

Inside conformal window

But N_f -dependence *must* enter at some N_f

Below conformal window m_{ϱ}/f_{π} finite in chiral limit (of course)

Inside conformal window $m_{\varrho} \sim m^{\alpha}$, $f_{\pi} \sim m^{\alpha}$ with $\alpha = \frac{1}{1+\gamma}$

Inside conformal window m_{ϱ}/f_{π} finite in chiral limit also

$$N_f=16.5$$
 is free, $m_{\varrho}=2m$ and $f_{\pi}=\sqrt{4N_c}~m$ so $m_{\varrho}/f_{\pi}=1/\sqrt{3}$

Inside conformal window - speculation

Inside conformal window - speculation

Inside conformal window - speculation

KSRF-relations

$$g_{\varrho\pi\pi} = \frac{m_{\varrho}}{f_{\varrho}} = \sqrt{48\pi \frac{\Gamma_{\varrho}}{m_{\varrho}}} = \frac{1}{\sqrt{2}} \frac{m_{\varrho}}{f_{\pi}}$$

Quite precise in QCD, should be more precise in $m \rightarrow 0$ limit

We have m_{ϱ}/f_{π} , assume KSRF \rightarrow we have $g_{\varrho\pi\pi}$

 $g_{arrho\pi\pi}$ also N_f -independent ~ 5.55

Go back to $E(m_{\varrho}, g_{\varrho\pi\pi}, L)$ full Luscher \rightarrow finite volume effects on m_{ϱ} small a posteriori

KSRF-relations

Assuming KSRF many ρ related quantities are N_f -independent:

• $g_{\varrho\pi\pi}$

- $\Gamma_{\varrho}/m_{\varrho}$
- m_{ϱ}/f_{ϱ}

Looks like vector meson doesn't know anything about ${\cal N}_f$

Gauge group dependence

Large-N: $m_{\varrho}/f_{\pi} \sim 1/\sqrt{N}$

- SU(2): $m_{\rho} \sim 2.4 \ TeV$
- SU(3): $m_{\varrho} \sim 2.0 \ TeV$
- SU(4): $m_{\varrho} \sim 1.7 \ TeV$
- SU(5): $m_{\rho} \sim 1.5 \ TeV$
- SU(6): $m_{\varrho} \sim 1.4 \ TeV$

Other gauge groups and representations in literature

•
$$SU(2)$$
 $N_f = 2, 4$ $R = fund$

•
$$SU(3)$$
 $N_f = 2$ $R = sextet$

•
$$SU(N)$$
 $N_f = 0$ $R = fund$

•
$$SU(N)$$
 $N_f = 4$ $R = fund$

•
$$SU(4)$$
 $N_f = 2$ $R = fund, sextet$

• Sp(4) $N_f = 0$ R = fund, anti - symm

•
$$Sp(4)$$
 $N_f = 2$ $R = fund$

Comparison

Top: $\sqrt{dim(R)} m_{\varrho}/f_{\pi}$ where dim(R) = N for R = fund

Conclusions

- Dynamics very N_f -dependent
- But: $m_{\varrho}/f_{\pi}=$ 7.85(14) for SU(3) and $2\leq N_{f}\leq$ 10
- KSRF: $g_{\varrho\pi\pi}$ also $N_f\text{-independent}$

• BSM

experimental result for m_{ϱ} : conclude about SU(N) not R, N_f

Outlook

- Theoretical understanding of KSRF?
 Proven in SQCD
 Komargodski 1010.4105
- Theoretical understanding of N_f -independence?
- N_f -dependence of m_{ϱ}/f_{π} inside the conformal window?
- Should reach $m_{\varrho}/f_{\pi} = 1/\sqrt{3} = 0.577$ at $N_f = 16.5$

Thank you for your attention!

Backup slides

Taste breaking

One could measure all taste broken Goldstones directly

Instead: look for a quantity with the most $N_f\mbox{-dependence}$ and see if it is reproduced or not

Good candidate: topological susceptibility $\chi = \frac{\langle Q^2 \rangle}{V}$, very sensitive to light degrees of freedom

Continuum: $\chi = \frac{m_{\pi}^2 f_{\pi}^2}{2N_f}$

Chiral - continuum extrapolate χ , see N_f -dependence

Extrapolation in w_0 units (dof=13 with $N_f = 2, ..., 6$)

$$\chi w_0^4 = C_0 m_\pi^2 f_\pi^2 w_0^4 + C_1 \frac{a^2}{w_0^2} + C_2 \frac{a^2}{w_0^2} (m_\pi^2 f_\pi^2 w_0^4)$$

Continuum expectation: $C_0 = \frac{1}{2N_f}$

But taste broken Goldstones also enter χ

Billeter/Detar/Osborn hep-lat/0406032

Taste breaking - topological susceptibility

 $\frac{2N_f\chi}{m_\pi^2 f_\pi^2}$ as a function of $m_\pi^2 f_\pi^2 w_0^4$ (should be 1)

Shift symmetry broken phase

