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Background story

Topological susceptibility x(7') in QCD at high T

Interesting for axion physics

e 20 May 2015, Andreas Ringwald (DESY Hamburg), Ultralight
Axion-Like Particles from Strings

e 5 October 2016, Sandor Katz (Eotvos), Axion cosmology from
lattice QCD

e 12 February 2020, Tamas G Kovacs (Eotvos), Instanton inter-
actions in high temperature QCD

Talks at our own Wednesday seminar series



Background story

Calculation of x(T)

o ' < T.: definitely non-perturbative, mostly lattice

e ' — oo: semi-classical, perturbative

Comparison of lattice calculations with something else?
Only at very high temperature and only with semi-classical results.



Background story
Comparison of lattice results and semi-classical results at high T

Should be straighforward: semi-classical results (should be) well-
known, reliable lattice results are available starting from 2015

One just needs to plot the 2 results and see

Semi-classical result involves T'= 0 input and at T' > T, a peculiar
formula

Everybody uses these without ever checking

Let’'s check these — straightforward BSc thesis topic

Surprises along the way ...



Background story

Goal

Let's derive the best semi-classical formula
for x(T) using the known ingredients
SO we can compare with continuum lattice results



Outline

e Yang-Mills theory and QCD at finite temperature

e Semi-classical approach, instantons

e x(T) within semi-classical approach

e Surprise 1: over-all prefactor in QCD case (Nf #= 0)

e Surprise 2: temperature dependence — numerical integrals



Yang-Mills and QCD at finite temperature
SU(N) gauge fields (gluons) 4+ fermions (quarks)

In QCD: SU(3), v = (u,d, s,c,...)

1 _
o= 2—92/614”3—” FuvFuy + /d4$2¢¢(D + m; )

Euclidean signature, finite temperature field theory: S x R3
circumference of S1: 1/T

Phase transition or cross-over at T' = T,



Calculations at finite temperature

Strong coupling at T' < I, soO perturbative calculations not reliable
— mostly lattice

Weak coupling at T' — oo, perturbative calculations, semi-classical
methods reliable, can compare with lattice



Topological charge

1
1672

Integer if appropriate boundary conditions — topological charge

In path integral need to sum over all Q)

7 = %: / Do ADTDpe°

Z=. .0 0+ Z 1+ Zo+Z1+Zo+...=Zg+221+27>+ ...

Q@ = 1. 1-instanton, Q = 2: 2-instanton, ...



Topological charge and semi-classical approximation

Ordinary perturbation theory: expansion in g in Q = 0 sector

Semi-classical method: perturbative expansion in (Q = 0 sector +
tunnellings

Remember: reliable at T' — oo

Topological susceptibility

_ (@) _ 2 Z1+4Z+9Z3+...
X T V294271 4270+ 275+ ...

V = L3/T space-time volume



Topological susceptibility

There should be a semi-classical formula to
1-loop, 2-loop, 3-loop, ... for x(T)

Should be reliable unambiguous prediction of QCD at T' — o

Lattice results could be compared at high temperature

1 1
x(T) ~ TP—4+N; — 711/3N+1/3N;—4

5= My 2y
1= 3 3/

Main question: constant of proportionality



All ingredients are text book material

We all learnt about instantons from
Laci Palla when we were students

Should be straightforward exercise



Let’'s do the straightforward exercise! — BSc thesis topic

Expectation: everything already done

We just need to understand all details

Which is basically literature search and some calculations
if not all details included in papers — ideal for BSc



Results from literature

X:<Q2>:3 Z1+4Z2+9Z3+... 27
1% VZyg+2Z1+2Z>,+225+... V2

Last ... are suppregsed because 2-instanton, 3-instanton, etc. are
_8n~
suppressed by e ,2 <!

2 74

x(T) = VZ—O

Need path integral over 1-instanton moduli space and 1-loop fluc-
tuations around 1l-instanton



Results from literature

2 74

x(T) = VZ—O

Position of instanton x, arbitrary — factor V in integral

Size p of instanton — remaining dp integral

Zl oo
—:V/ don(o, T
74 a on(o,T)

n(o,T): size distribution of instantons at T



Results from literature

n(o,T) = n(g)e>(@T)

Size distribution at T' expressed from size distribution n(g) at T'= 0
T-dependence from S(p,T), dimensionless, depends on \ = wpT

— Need two ingredients: T'= 0 results and 7" > 0 modifications



Results from literature

Zero temperature 1-loop with light fermions, m;/T,m;/\ < 1

1672\ e
n(o) =C ( ) e ) — (op)”t || (om;(p))
9% (K 0> il;ll z

g(p) running coupling, m;(x) running masses

Over-all constant coefficient C' i1s scheme-dependent, because
renormalization is defined in a particular scheme

Frequently used schemes: Pauli-Villars, MS, MS, etc.



Results from literature T'= 0

Ny

(op)"1 .H (om;(w))

=1

2N 2

16 2 8w 1
n(g):c<2”> e )
g-(p) Y

Result for C in Pauli-Villars and SU(2):

G. t Hooft, Phys. Rev. D 14, 3432 (1976)

Unfortunately C incorrect, but only trivial mistake (factors of =),
corrected later in erratum

Erratum: [Phys. Rev. D 18, 2199 (1978)]

Pauli-Villars SU(2) result correct



Results from literature T' =0

1672\ —&2 g U
n(o) =C (gQ(u)> e 97 s (om) 1il;[1(9mi(u))

Result for C in Pauli-Villars and SU(N)
C. W. Bernard, Phys. Rev. D 19, 3013 (1979).

General SU(N) in Pauli-Villars correct



Results from literature T'= 0

Ny

(op)"1 .H (orm; (1))

=1

1672 ) N _er2 4

n — e 92w
e)=¢ (92(M) 0°

More frequently used schemes: MS and MS

Need to convert C to these schemes

Need to know A-parameter ratios



Results from literature T'=20
Needed: Apy/Ams, first given in original
G. t Hooft, Phys. Rev. D 14, 3432 (1976)
Unfortunately incorrect (not in Erratum either...)
Correct result
Apv _ 3(log(am) )+
AMS
A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B, 165 (1980)

Confirmed in G. t Hooft, Phys. Rept. 142, 357 (1986)



Results from literature T'= 0

Note: incorrect A-parameter ratios in

P. Weisz, Phys. Lett. 100B, 331 (1981)

R. F. Dashen and D. J. Gross, Phys. Rev. D 23, 2340 (1981)



Results from literature T'=20
In any case, MS result correct since Hasenfratz-Hasenfratz 1980
Most frequently used: MS

Conversion MS — MS should be straightforward

AMS _ A(log(4m)—7) Apv _

Ams Nvis

W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Reuv.
D 18, 3998 (1978)

And we have seen



Results from literature T' =0
Explicitly reported in MS

A. Ringwald and F. Schrempp, Phys. Lett. B 438, 217 (1998)
[hep-ph /9806528]

Unfortunately incorrect, never corrected before

€CO+Cl N—I—CQNf

C= N DIV 2

co and cq correct, but co reported incorrectly

Problem: MS — MS conversion involves (31 which depends on Ny,
conversion used pure Yang-Mills B1: co incorrect

1

. = 2. 55 where 2 from Nj-dependence of g-function,
/\_

rameter ratio

Mismatch:

1
. 22
55 from MS-MS a

P



Results from literature T'= 10

Wrong MS results used in all lattice - semi-classical comparisons

Furthermore, another wrong c» reported in

S. Moch, A. Ringwald and F. Schrempp, Nucl. Phys. B 507, 134
(1997) [hep-ph/9609445]

I. I. Balitsky and V. M. Braun, Phys. Rev. D 47, 1879 (1993)



First correct MS result

eCO—l—ClN—l—CQNf
Core =
MS (N — DI(N = 2)!
5
co = 6+|ogz—2|og7r — —0.76297926
, 11 11
ci1 = 4 (-1)4+ =2 —-""log2 = —2.89766868
366 31
7
= —4¢(-1)—- — —Zlog2 = 0.26144360
co ¢(—1) 306 399

Ringwald-Schrempp: ¢co = 0.291746

Moch-Ringwald-Schrempp, Balitsky-Braun: co = 0.153



First correct MS result

1672\ " & 1 i
n(o) = Cyg (92(u)> e 92 5 (o)™ .l;Il(sz’(/J))

Finally T = 0 instanton size distribution in MS at 1-loop

Once Cyzg okay, (partial) 2-loop result from literature can be taken
over



Results in literature 7" > 0

n(o,T) = n(g)e ¥ A= moT
1.5 N — Ny

D. J. Gross, R. D. Pisarski and L. G. Yaffe, Rev. Mod. Phys. 53,
43 (1981)

M) = 167 /Sl><R3< M2 ) _/34 N3



Results in literature T" > 0

1

12400 = 5

/Sl><R3( N2 >_/R4 I_I%

Where Mg from 1-insanton solution on R* and M is from Harrington-
Sheppard 1-instanton solution on S1 x R3

Q2
Mo(t,r) = 1+752—|——7“2
Nirr) = 14+ 3 (rl0<7+%,r>—1)=
2 .
_ 1_|_7TQ T sinh(27wrT)

r cosh(2nrT) — cos(2n7T)

—o0o < t < oo and 7 periodic, A(0) = 0 from subtraction



Results in literature T" > 0

Because of spherical symmetry, A()\) is a 2-dimensional integral
and A(0) =0

Analytically not possible, numerical form from Gross-Pisarski-Yaffe:

A2 12a
12Agpy()\) = — Iog (1 + —) —|— 3
3 (1 +’Y>\_3/2)
a = 0.01289764 v = 0.15858

Claimed absolute numerical uncertainty: 6-10~%
Once A()) is known, the full x(T') is known semi-classically

Above Aqgpy used in all works

Why the specific form? Why the powers 3/2 and 87



New results for A()\)

Main motivation was to understand the peculiar form of A()\)

In Gross-Pisarski-Yaffe no details are given

Technically: difference of two 2D integrals, both are divergent,
difference finite

We do three things:

e Evaluate numerically to high precision

e ODbtain analytic A< 1 and A > 1 series

e Fit numerical result with simple function



New results for A(\)

Evaluate numerically to high precision

D)= 16 /Sl><R3< M2 ) _/34 N3

92
Mo(t,r) = 1+t2—|—r2
Nir,r) = 14+ > (ﬂo(T—l—%,T)—l):
02T sinh(27rT)

= 14+

r cosh(2xrT) — cos(2n7T)



New results for A(\)

In first term, do integral over Sl via residue theorem, rescale r by
1/(2nT)

In second term, do integral over —oco <t < oo, rescale r by o
1 oo 5
124()) = 5/0 dr 12 (I(r) — Io(r))

I(r) and Ip(r) analytically

r-integrals separately divergent, difference finite



New results for A(\)

Numerical evaluation of r-integrals: trapezoid or Simpsons on
(0, 8), semi-analytic or (8,00) — absolute precision O(107°)

Essential: O(100) significant digits because of large cancellations
between I(r) and Ig(r) and also inside I(r) for small A
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New results for A(\) - asymptotics

Small A asymptotics - log still a bit mysterious

1 1 1 22
12A\) = —=X2 4+ =2 - — X4+ 000 =—log (1 +5 )+ o\")

3 18 81
Large A\ asymptotics

log(A?) 02
12A\) = —log(\?) 4+ Cq — 12 51+ O (}\3>
o = 22 ™ 1+ logw | = 1.25338375
1 = 3 36 Y gm| = 1.
2
Co = 1+4log?2 +%+7 _logn = 1.39978864



New results for A(\) - asymptotics
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These look good - let's compare with Gross-Pisarski-Yaffe



New results for A(\) - comparison with GPY

Absolute error
01 T T ] ]

0.08

0.06

0.04

12 Agpy(\) - 12 AQ\)

0.02

8-10"2, two orders of magnitude worse than claimed

GPY: 2D integral numerically



New results for A(\) - useful parametrization

—12Aparam(X) = polog(1l + p1>\2 + p2>\4 + p3>\6 + p4>\8)
po = 0.247153244, p1 = 1.356391323

po = 0.675021523, p3 = 0.145446632, pg = 0.008359667

Absolute precision 2-10~%

Biggest deviation from GPY: A = O(1) because of large cancella-
tions inside I(r) — the most sensitive region for pg-integral in x(7T)
— potentially large effect



Absolute and relative precision

Absolute precision on A(\) —

124\ (1+N6Nf)
Relative precision on n(p,T) ~ e —

Relative precision on x(7T)

Discrepancy Agpy VS. our Apagram in x(71):
o SU(3) Ny =0,2,3,4: 10%, 7%, 6%, 4%
e SU(10) pure Yang-Mills: 22%

e SU(20) pure Yang-Mills: 40% (scales with N)



Accounting for T'= 0 and 1" > O discrepancies in QCD
T =0 from Cyg: approx 5% (correct smaller)

T > 0 from A()\): approx 5% (correct larger)

But in opposite directions ... nearly cancel

Eventually very small effect in QCD

But at least now the semi-classical result is fully correct



Actual comparison at high temperature

SU(3) pure Yang-Mills at T/T, = 4.1

Lattice (continuum): log <X%—:£) = 12.47(21) from 1806.01162

Semi-classical: log (%) = 13.80(10)(40)

Using 5-l1oop running, 2-loop x. First error: residual u-dependence,
second (dominant) error: T./Agg error (from lattice)

Within 3o



Actual comparison at high temperature in QCD (4 flavors)
at T' = 2000 MeV

PDG: Ay = 292(16) MeV approx 5% error

Lattice (continuum): log (%) — 3.99(68)

from S. Borsanyi et al., Nature 539, no. 7627, 69 (2016)
[arXiv:1606.07494 [hep-lat]]

Semi-classical: log (ﬁ(?/ﬁ) = 1.15(3)(46)
Within 3.5¢0

For higher temperature, deviation decreasing

For better agreement: higher loop x(T) — difficult



Summary

e Obtained n(p,T) at high temperature semi-classically

e Needed to correct T' = 0O results in literature

e Needed to correct T'> 0 1-loop fluctuation determinant

e Correctly include experimental error on /\M—S

e Makes x(T) comparison with lattice possible

e Exactly zero new or original idea :)

e Nevertheless interesting outcome from simple BSc thesis topic



Thank you for your attention!



