Revisiting the semi-classical approximation at high temperature

Alexander Boccaletti and Daniel Nogradi

2001.03383 - JHEP 03 (2020) 045

Eotvos University Budapest

Topological susceptibility $\chi(T)$ in QCD at high T

Interesting for axion physics

- 20 May 2015, Andreas Ringwald (DESY Hamburg), Ultralight Axion-Like Particles from Strings
- 5 October 2016, Sandor Katz (Eotvos), Axion cosmology from lattice QCD
- 12 February 2020, Tamas G Kovacs (Eotvos), Instanton interactions in high temperature QCD

Talks at our own Wednesday seminar series

Calculation of $\chi(T)$

- $T < T_c$: definitely non-perturbative, mostly lattice
- $T \rightarrow \infty$: semi-classical, perturbative

Comparison of lattice calculations with something else? Only at very high temperature and only with semi-classical results.

Comparison of lattice results and semi-classical results at high ${\cal T}$

Should be straighforward: semi-classical results (should be) wellknown, reliable lattice results are available starting from 2015

One just needs to plot the 2 results and see

Semi-classical result involves T = 0 input and at $T > T_c$ a peculiar formula

Everybody uses these without ever checking

Let's check these \rightarrow straightforward BSc thesis topic

Surprises along the way ...

Goal

Let's derive the best semi-classical formula for $\chi(T)$ using the known ingredients so we can compare with continuum lattice results

Outline

- Yang-Mills theory and QCD at finite temperature
- Semi-classical approach, instantons
- $\chi(T)$ within semi-classical approach
- Surprise 1: over-all prefactor in QCD case $(N_f \neq 0)$
- Surprise 2: temperature dependence \rightarrow numerical integrals

Yang-Mills and QCD at finite temperature

SU(N) gauge fields (gluons) + fermions (quarks)

In QCD: SU(3), $\psi = (u, d, s, c, ...)$

$$S = \frac{1}{2g^2} \int d^4x \operatorname{Tr} F_{\mu\nu} F_{\mu\nu} + \int d^4x \sum_i \bar{\psi}_i (D+m_i) \psi_i$$

Euclidean signature, finite temperature field theory: $S^1 \times R^3$ circumference of S^1 : 1/T

Phase transition or cross-over at $T = T_c$

Calculations at finite temperature

Strong coupling at $T < T_c$ so perturbative calculations not reliable \rightarrow mostly lattice

Weak coupling at $T \to \infty$, perturbative calculations, semi-classical methods reliable, can compare with lattice

Topological charge

$$Q = \frac{1}{16\pi^2} \int d^4 x \varepsilon_{\mu\nu\rho\sigma} \operatorname{Tr} F_{\mu\nu} F_{\rho\sigma}$$

Integer if appropriate boundary conditions \rightarrow topological charge

In path integral need to sum over all Q

$$Z = \sum_{Q} \int \mathscr{D}_{Q} A \mathscr{D} \bar{\psi} \mathscr{D} \psi e^{-S}$$

 $Z = \dots Z_{-2} + Z_{-1} + Z_0 + Z_1 + Z_2 + \dots = Z_0 + 2Z_1 + 2Z_2 + \dots$

Q = 1: 1-instanton, Q = 2: 2-instanton, ...

Topological charge and semi-classical approximation

Ordinary perturbation theory: expansion in g in Q = 0 sector

Semi-classical method: perturbative expansion in $Q \neq 0$ sector + tunnellings

Remember: reliable at $T \to \infty$

Topological susceptibility

$$\chi = \frac{\langle Q^2 \rangle}{V} = \frac{2}{V} \frac{Z_1 + 4Z_2 + 9Z_3 + \dots}{Z_0 + 2Z_1 + 2Z_2 + 2Z_3 + \dots}$$

 $V = L^3/T$ space-time volume

Topological susceptibility

There should be a semi-classical formula to 1-loop, 2-loop, 3-loop, ... for $\chi(T)$

Should be reliable unambiguous prediction of QCD at $T \to \infty$

Lattice results could be compared at high temperature

$$\chi(T) \sim \frac{1}{T^{\beta_1 - 4 + N_f}} = \frac{1}{T^{11/3N + 1/3N_f - 4}}$$

$$\beta_1 = \frac{11}{3}N - \frac{2}{3}N_f$$

Main question: constant of proportionality

All ingredients are text book material

We all learnt about instantons from Laci Palla when we were students

Should be straightforward exercise

Let's do the straightforward exercise! \rightarrow BSc thesis topic

Expectation: everything already done

We just need to understand all details

Which is basically literature search and some calculations if not all details included in papers \rightarrow ideal for BSc

$$\chi = \frac{\langle Q^2 \rangle}{V} = \frac{2}{V} \frac{Z_1 + 4Z_2 + 9Z_3 + \dots}{Z_0 + 2Z_1 + 2Z_2 + 2Z_3 + \dots} = \frac{2}{V} \frac{Z_1}{Z_0} + \dots$$

Last ... are suppressed because 2-instanton, 3-instanton, etc. are suppressed by $e^{-\frac{8\pi^2}{g^2}|Q|}$

$$\chi(T) = \frac{2}{V} \frac{Z_1}{Z_0}$$

Need path integral over 1-instanton moduli space and 1-loop fluctuations around 1-instanton

$$\chi(T) = \frac{2}{V} \frac{Z_1}{Z_0}$$

Position of instanton x_{μ} arbitrary \rightarrow factor V in integral

Size ρ of instanton \rightarrow remaining $d\rho$ integral

$$\frac{Z_1}{Z_0} = V \int_0^\infty d\varrho n(\varrho, T)$$

 $n(\varrho, T)$: size distribution of instantons at T

$$n(\varrho,T) = n(\varrho)e^{-S(\varrho,T)}$$

Size distribution at T expressed from size distribution $n(\varrho)$ at T = 0

T-dependence from $S(\varrho, T)$, dimensionless, depends on $\lambda = \pi \varrho T$

 \rightarrow Need two ingredients: T = 0 results and T > 0 modifications

Zero temperature 1-loop with light fermions, $m_i/T, m_i/\Lambda \ll 1$

$$n(\varrho) = C \left(\frac{16\pi^2}{g^2(\mu)}\right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho\mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

 $g(\mu)$ running coupling, $m_i(\mu)$ running masses

Over-all constant coefficient C is scheme-dependent, because renormalization is defined in a particular scheme

Frequently used schemes: Pauli-Villars, MS, \overline{MS} , etc.

$$n(\varrho) = C \left(\frac{16\pi^2}{g^2(\mu)}\right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho\mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

Result for C in Pauli-Villars and SU(2):

G. t Hooft, Phys. Rev. D 14, 3432 (1976)

Unfortunately C incorrect, but only trivial mistake (factors of π), corrected later in erratum

Erratum: [Phys. Rev. D 18, 2199 (1978)]

Pauli-Villars SU(2) result correct

$$n(\varrho) = C \left(\frac{16\pi^2}{g^2(\mu)}\right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho\mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

Result for C in Pauli-Villars and SU(N)

C. W. Bernard, Phys. Rev. D 19, 3013 (1979).

General SU(N) in Pauli-Villars correct

$$n(\varrho) = C \left(\frac{16\pi^2}{g^2(\mu)}\right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho\mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

More frequently used schemes: MS and \overline{MS}

Need to convert ${\boldsymbol C}$ to these schemes

$$C_1 = C_2 \left(\frac{\Lambda_2}{\Lambda_1}\right)^{\beta_1}$$

Need to know Λ -parameter ratios

Needed: $\Lambda_{PV}/\Lambda_{MS}$, first given in original

G. t Hooft, Phys. Rev. D 14, 3432 (1976)

Unfortunately incorrect (not in Erratum either...)

Correct result

$$\frac{\Lambda_{\rm PV}}{\Lambda_{\rm MS}} = e^{\frac{1}{2}(\log(4\pi) - \gamma) + \frac{1}{22}}$$

A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B, 165 (1980)

Confirmed in G. t Hooft, Phys. Rept. 142, 357 (1986)

Note: incorrect Λ -parameter ratios in

P. Weisz, Phys. Lett. 100B, 331 (1981)

R. F. Dashen and D. J. Gross, Phys. Rev. D 23, 2340 (1981)

In any case, MS result correct since Hasenfratz-Hasenfratz 1980

Most frequently used: \overline{MS}

Conversion $MS \rightarrow \overline{MS}$ should be straightforward

$$\frac{\Lambda_{\overline{\text{MS}}}}{\Lambda_{\text{MS}}} = e^{\frac{1}{2}(\log(4\pi) - \gamma)} \qquad \qquad \frac{\Lambda_{\text{PV}}}{\Lambda_{\overline{\text{MS}}}} = e^{\frac{1}{22}}$$

W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev. D 18, 3998 (1978)

And we have seen

$$C_1 = C_2 \left(\frac{\Lambda_2}{\Lambda_1}\right)^{\beta_1}$$

Explicitly reported in \overline{MS}

A. Ringwald and F. Schrempp, Phys. Lett. B 438, 217 (1998) [hep-ph/9806528]

Unfortunately incorrect, never corrected before

$$C = \frac{e^{c_0 + c_1 N + c_2 N_f}}{(N-1)!(N-2)!}$$

 c_0 and c_1 correct, but c_2 reported incorrectly

Problem: $MS \rightarrow \overline{MS}$ conversion involves β_1 which depends on N_f , conversion used pure Yang-Mills β_1 : c_2 incorrect

Mismatch: $\frac{1}{33} = \frac{2}{3} \cdot \frac{1}{22}$ where $\frac{2}{3}$ from N_f -dependence of β -function, $\frac{1}{22}$ from MS-MS Λ -parameter ratio

Wrong $\overline{\text{MS}}$ results used in all lattice - semi-classical comparisons

Furthermore, another wrong c_2 reported in

S. Moch, A. Ringwald and F. Schrempp, Nucl. Phys. B 507, 134 (1997) [hep-ph/9609445]

I. I. Balitsky and V. M. Braun, Phys. Rev. D 47, 1879 (1993)

First correct $\overline{\text{MS}}$ result

$$C_{\overline{\text{MS}}} = \frac{e^{c_0 + c_1 N + c_2 N_f}}{(N-1)!(N-2)!}$$

$$c_{0} = \frac{5}{6} + \log 2 - 2 \log \pi = -0.76297926$$

$$c_{1} = 4\zeta'(-1) + \frac{11}{36} - \frac{11}{3} \log 2 = -2.89766868$$

$$c_{2} = -4\zeta'(-1) - \frac{67}{396} - \frac{1}{3} \log 2 = 0.26144360$$

Ringwald-Schrempp: $c_2 = 0.291746$

Moch-Ringwald-Schrempp, Balitsky-Braun: $c_2 = 0.153$

First correct $\overline{\text{MS}}$ result

$$n(\varrho) = C_{\overline{\mathsf{MS}}} \left(\frac{16\pi^2}{g^2(\mu)}\right)^{2N} e^{-\frac{8\pi^2}{g^2(\mu)}} \frac{1}{\varrho^5} (\varrho\mu)^{\beta_1} \prod_{i=1}^{N_f} (\varrho m_i(\mu))$$

Finally T = 0 instanton size distribution in \overline{MS} at 1-loop

Once $C_{\overline{\rm MS}}$ okay, (partial) 2-loop result from literature can be taken over

Results in literature T > 0

$$n(\varrho, T) = n(\varrho)e^{-S(\lambda)}$$
 $\lambda = \pi \varrho T$

$$S(\lambda) = \frac{1}{3}\lambda^2(2N+N_f) + 12A(\lambda)\left(1 + \frac{N-N_f}{6}\right)$$

D. J. Gross, R. D. Pisarski and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981)

$$12A(\lambda) = \frac{1}{16\pi^2} \left[\int_{S^1 \times R^3} \left(\frac{\partial_\mu \Pi \partial_\mu \Pi}{\Pi^2} \right)^2 - \int_{R^4} \left(\frac{\partial_\mu \Pi_0 \partial_\mu \Pi_0}{\Pi_0^2} \right)^2 \right]$$

Results in literature T > 0

$$12A(\lambda) = \frac{1}{16\pi^2} \left[\int_{S^1 \times R^3} \left(\frac{\partial_\mu \Pi \partial_\mu \Pi}{\Pi^2} \right)^2 - \int_{R^4} \left(\frac{\partial_\mu \Pi_0 \partial_\mu \Pi_0}{\Pi_0^2} \right)^2 \right]$$

Where Π_0 from 1-insanton solution on R^4 and Π is from Harrington-Sheppard 1-instanton solution on $S^1 \times R^3$

$$\Pi_{0}(t,r) = 1 + \frac{\varrho^{2}}{t^{2} + r^{2}}$$

$$\Pi(\tau,r) = 1 + \sum_{n=-\infty}^{\infty} \left(\Pi_{0} \left(\tau + \frac{n}{T}, r \right) - 1 \right) =$$

$$= 1 + \frac{\pi \varrho^{2} T}{r} \frac{\sinh(2\pi r T)}{\cosh(2\pi r T) - \cos(2\pi \tau T)}$$

 $-\infty < t < \infty$ and τ periodic, A(0) = 0 from subtraction

Results in literature T > 0

Because of spherical symmetry, $A(\lambda)$ is a 2-dimensional integral and A(0) = 0

Analytically not possible, numerical form from Gross-Pisarski-Yaffe:

$$12A_{GPY}(\lambda) = -\log\left(1 + \frac{\lambda^2}{3}\right) + \frac{12\alpha}{\left(1 + \gamma\lambda^{-3/2}\right)^8}$$

 $\alpha = 0.01289764 \qquad \gamma = 0.15858$

Claimed absolute numerical uncertainty: $6 \cdot 10^{-4}$

Once $A(\lambda)$ is known, the full $\chi(T)$ is known semi-classically Above A_{GPY} used in **all** works

Why the specific form? Why the powers 3/2 and 8?

Main motivation was to understand the peculiar form of $A(\lambda)$

In Gross-Pisarski-Yaffe no details are given

Technically: difference of two 2D integrals, both are divergent, difference finite

We do three things:

- Evaluate numerically to high precision
- Obtain analytic $\lambda \ll 1$ and $\lambda \gg 1$ series
- Fit numerical result with simple function

Evaluate numerically to high precision

$$12A(\lambda) = \frac{1}{16\pi^2} \left[\int_{S^1 \times R^3} \left(\frac{\partial_\mu \Pi \partial_\mu \Pi}{\Pi^2} \right)^2 - \int_{R^4} \left(\frac{\partial_\mu \Pi_0 \partial_\mu \Pi_0}{\Pi_0^2} \right)^2 \right]$$

$$\Pi_{0}(t,r) = 1 + \frac{\varrho^{2}}{t^{2} + r^{2}}$$

$$\Pi(\tau,r) = 1 + \sum_{n=-\infty}^{\infty} \left(\Pi_{0} \left(\tau + \frac{n}{T}, r \right) - 1 \right) =$$

$$= 1 + \frac{\pi \varrho^{2} T}{r} \frac{\sinh(2\pi r T)}{\cosh(2\pi r T) - \cos(2\pi \tau T)}$$

In first term, do integral over S^1 via residue theorem, rescale r by $1/(2\pi T)$

In second term, do integral over $-\infty < t < \infty$, rescale r by ϱ

$$12A(\lambda) = \frac{1}{2} \int_0^\infty dr \, r^2 \, \left(I(r) - I_0(r) \right)$$

I(r) and $I_0(r)$ analytically

r-integrals separately divergent, difference finite

Numerical evaluation of *r*-integrals: trapezoid or Simpsons on (0,8), semi-analytic or $(8,\infty) \rightarrow$ absolute precision $O(10^{-6})$

Essential: O(100) significant digits because of large cancellations between I(r) and $I_0(r)$ and also inside I(r) for small λ

New results for $A(\lambda)$ - asymptotics

Small λ asymptotics - log still a bit mysterious

$$12A(\lambda) = -\frac{1}{3}\lambda^2 + \frac{1}{18}\lambda^4 - \frac{1}{81}\lambda^6 + O(\lambda^7) = -\log\left(1 + \frac{\lambda^2}{3}\right) + O(\lambda^7)$$

Large λ asymptotics

$$12A(\lambda) = -\log(\lambda^2) + C_1 - \frac{\log(\lambda^2)}{\lambda^2} - \frac{C_2}{\lambda^2} + O\left(\frac{1}{\lambda^3}\right)$$
$$C_1 = 2\left(\frac{1}{3} - \frac{\pi^2}{36} - \gamma + \log\pi\right) = 1.25338375$$
$$C_2 = 1 + \log 2 + \frac{\pi^2}{36} + \gamma - \log\pi = 1.39978864$$

New results for $A(\lambda)$ - asymptotics

These look good - let's compare with Gross-Pisarski-Yaffe

New results for $A(\lambda)$ - comparison with GPY

 $8 \cdot 10^{-2}$, two orders of magnitude worse than claimed

GPY: 2D integral numerically

New results for $A(\lambda)$ - useful parametrization

 $-12A_{param}(\lambda) = p_0 \log(1 + p_1 \lambda^2 + p_2 \lambda^4 + p_3 \lambda^6 + p_4 \lambda^8)$ $p_0 = 0.247153244, \quad p_1 = 1.356391323$ $p_2 = 0.675021523, \quad p_3 = 0.145446632, \quad p_4 = 0.008359667$

Absolute precision $2 \cdot 10^{-4}$

Biggest deviation from GPY: $\lambda = O(1)$ because of large cancellations inside $I(r) \rightarrow$ the most sensitive region for ρ -integral in $\chi(T) \rightarrow$ potentially large effect Absolute and relative precision

Absolute precision on $A(\lambda) \rightarrow$

Relative precision on $n(\varrho, T) \sim e^{-12A(\lambda)\left(1 + \frac{N - N_f}{6}\right)} \rightarrow$

Relative precision on $\chi(T)$

Discrepancy A_{GPY} vs. our A_{param} in $\chi(T)$:

• $SU(3) N_f = 0, 2, 3, 4$: 10%, 7%, 6%, 4%

• SU(10) pure Yang-Mills: 22%

• SU(20) pure Yang-Mills: 40% (scales with N)

Accounting for T = 0 and T > 0 discrepancies in QCD

T = 0 from $C_{\overline{MS}}$: approx 5% (correct smaller)

T > 0 from $A(\lambda)$: approx 5% (correct larger)

But in opposite directions ... nearly cancel

Eventually very small effect in QCD

But at least now the semi-classical result is fully correct

Actual comparison at high temperature

SU(3) pure Yang-Mills at $T/T_c = 4.1$

Lattice (continuum): $\log \left(\frac{\chi(T)}{T_c^4}\right) = 12.47(21)$ from 1806.01162

Semi-classical:
$$\log\left(\frac{\chi(T)}{T_c^4}\right) = 13.80(10)(40)$$

Using 5-loop running, 2-loop χ . First error: residual μ -dependence, second (dominant) error: $T_c/\Lambda_{\overline{\text{MS}}}$ error (from lattice)

Within 3σ

Actual comparison at high temperature in QCD (4 flavors) at T = 2000 MeV

PDG: $\Lambda_{\overline{\text{MS}}} = 292(16) MeV$ approx 5% error

Lattice (continuum): $\log \left(\frac{\chi(T)}{MeV^4}\right) = 3.99(68)$ from S. Borsanyi et al., Nature 539, no. 7627, 69 (2016) [arXiv:1606.07494 [hep-lat]]

Semi-classical: $\log\left(\frac{\chi(T)}{MeV^4}\right) = 1.15(3)(46)$

Within 3.5σ

For higher temperature, deviation decreasing

For better agreement: higher loop $\chi(T) \rightarrow$ difficult

Summary

- Obtained $n(\varrho, T)$ at high temperature semi-classically
- Needed to correct T = 0 results in literature
- Needed to correct T > 0 1-loop fluctuation determinant
- Correctly include experimental error on $\Lambda_{\overline{\text{MS}}}$
- Makes $\chi(T)$ comparison with lattice possible
- Exactly **zero** new or original idea :)

• Nevertheless interesting outcome from simple BSc thesis topic

Thank you for your attention!