

Trans-series from condensates

Ramon Miravitllas Mas

HUN-REN Wigner Research Centre for Physics

March 12, 2024

WORK WITH Marcos Mariño

Ramon Miravitllas Mas (Wigner Research Centre)

1 Review on QCD, the Operator Product Expansion and trans-series

QCD is too hard. Let's consider a toy model

Review on QCD, the Operator Product Expansion and trans-series

QCD: perturbative vs non-perturbative

(Massless) QCD Lagrangian:

QCD: perturbative vs non-perturbative

QCD is asymptotically free ($\Lambda_{QCD} = 332 \pm 17$ MeV):

$$\begin{array}{ccc} g_0 & \xrightarrow{\text{Renormalization}} & g(p^2) \approx \frac{1}{\beta_0 \log(p^2/\Lambda_{\rm QCD}^2)} \\ \text{bare coupling} & \text{renormalized coupling} & \text{sman} \\ & & \text{at} \end{array}$$

 $p^2 \to \infty \longrightarrow 0$

Perturbation theory valid at large energies (e.g. colliders). But fails to describe QCD at low energies (NON-perturbative physics):

QCD has a mass gap: Observable particles can't have arbitrarily low energies. The lowest mass of observable particles is $m \approx 135$ MeV (pions).

Confinement: Quarks and gluons cannot be observed in isolation.

Chiral symmetry breaking: Generates masses of hadrons far above the masses of the quarks and makes pions exceptionally light.

Operator Product Expansion (OPE): a trans-series with condensates

How can we extract non-perturbative information from the Lagrangian?

Do lattice QCD with the help of computers.

Extend our perturbative computation to a trans-series:

Operator Product Expansion (OPE): a trans-series with condensates

The two-point correlator of any local operator can be written as an expansion in other local operators:

$$\int \mathrm{d}^4 x \,\mathrm{e}^{\mathrm{i}px} \langle \psi(x)\overline{\psi}(0) \rangle = \sum_i C_i(p) \langle O_i(0) \rangle, \quad p^2 \to \infty,$$

 $C_i(x)$ are the Wilson coefficients,

 $O_i(0)$ are local operators (local = all fields evaluated at the same point):

$$O_i(0) = \prod_i \partial_i \prod_j \psi_j(0) \prod_k B_k(0)$$

 $\langle O_i(0) \rangle$ are called the (vacuum) condensates.

Important condensates in QCD, used in many phenomenological applications (SVZ sum rules):

- Identity $\langle I \rangle = 1$: Its Wilson coefficients give rise to perturbation theory.
- Quark condensate ⟨mψψ⟩: Breaks chiral symmetry, explaining masses of mesons, e.g. M²_π ∝ (m_u + m_d)⟨ψψ⟩.
 Gluon condensate ⟨G^a_{μν}G^{aν}_{μν}⟩.

QCD is too hard. Let's consider a toy model

The $\mathrm{U}(N)$ Gross–Neveu model

A QFT in 1 + 1 dimensions: N fermions $\psi(x) = (\psi_1(x), \dots, \psi_N(x))$ with a 4-vertex interaction:

Better to consider an equivalent Lagrangian with a bosonic auxiliary field σ :

$$\mathcal{L}_{\sigma} = \mathrm{i}\overline{\psi} \cdot \gamma^{\mu}\partial_{\mu}\psi - rac{1}{2}\sigma^{2} + g_{0}\sigma\overline{\psi} \cdot \psi, \quad \sigma \dots \quad \swarrow_{\psi_{j}}$$

Easy to check that both Lagrangians are equivalent.

The fermion two-point correlator and the self-energy

Let's compute the two-point correlator of the fermions ($p = \gamma^{\mu} p_{\mu}$):

The blob is the so-called self-energy of the fermion:

Ramon Miravitllas Mas (Wigner Research Centre)

$\mathrm{U}(N)$ Gross–Neveu model at large N

Can be computed exactly in dimensional regularization:

$$\begin{split} \Sigma &= \frac{\not p}{N} \int_0^\infty \mathrm{e}^{-y/\lambda} \frac{1}{4-2y} \mathrm{d}y \\ &= \frac{\not p}{N} \left[\frac{\lambda}{4} + \frac{\lambda^2}{8} + \frac{\lambda^3}{8} + \frac{3\lambda^4}{16} + \mathcal{O}(\lambda^5) \right] + \mathcal{O}(1/N^2) + \mathcal{O}(\mathrm{e}^{-2/\lambda}), \end{split}$$

[Campostrini, Rossi 1992] where $\lambda = \frac{Ng^2}{\pi}$ ('t Hooft coupling). But we are still missing all non-perturbative corrections!

$\mathrm{U}(N)$ Gross–Neveu model at large N: an alternative way

There is a second way to compute the self-energy, which incorporates non-perturbative corrections, but only suited for special (toy) models.
 Recalling the Lagrangian:

$$\mathcal{L}_{\sigma} = \mathrm{i}\overline{\psi} \cdot \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} \sigma^{2} + g_{0} \sigma \overline{\psi} \cdot \psi$$

Realize that it is quadratic in the fermions, so they can be integrated out. This yields an effective action:

$$S_{\text{eff}} = \int \mathrm{d}^2 x \left[-\frac{\sigma^2}{2g_0^2} - \mathrm{i}N \int \frac{\mathrm{d}^2 p}{(2\pi)^2} \operatorname{Tr} \log(\not p - \sigma) \right].$$

 σ must satisfy the equations of motion:

Solving for σ_c and computing the integral in dimensional regularization:

$$\sigma_c \equiv m = p e^{-1/\lambda}$$
 is a non-perturbative parameter. $(\lambda = \frac{Ng^2}{\pi})$

$\mathrm{U}(N)$ Gross–Neveu model at large N: an alternative way

Using the non-perturbative propagator for σ , we obtain the non-perturbative self-energy of the fermions (at large N) [Campostrini, Rossi 1992]

$$\Sigma(p) = m + \frac{1}{N} \left(\not p \Sigma_p(p^2) + m \Sigma_m(p^2) \right) + \mathcal{O}(1/N^2) + \mathcal{O}(e^{-1/\chi})$$

$$\begin{split} \Sigma_p(p^2) &= \frac{1}{4p^2} \int_0^\infty \mathrm{d}k^2 \left[\xi \log\left(\frac{\xi+1}{\xi-1}\right) \right]^{-1} \left[1 - \frac{p^2 + k^2 + m^2}{\sqrt{(p^2 - k^2 - m^2)^2 + 4p^2k^2}} \right],\\ \Sigma_m(p^2) &= \text{ A similar expression } \dots \end{split}$$
with $\xi &= \sqrt{1 - 4m^2/k^2}. \end{split}$

Fermions behave as if they had mass m ("propagator" $=\frac{i}{\not p - \Sigma} \approx \frac{i}{\not p - m}$). m is the mass gap of the theory.

The integral can be computed numerically for different values of p²/m², but it is more instructive to compute its trans-series expansion for small values of

$$\lambda = \frac{2}{\log(p^2/m^2)}, \quad (p^2 \to \infty), \quad \left(m = p \,\mathrm{e}^{-1/\lambda}\right)$$

$\mathrm{U}(N)$ Gross–Neveu model at large N: an alternative way

Extracting the trans-series would be impossible if not for a trick found in [Beneke, Braun, Kivel 1998]:

$$\Sigma(p) = m + \frac{1}{N} \left(\not p \Sigma_p(p^2) + m \Sigma_m(p^2) \right) + \mathcal{O}(1/N^2)$$

$$\sum_{p \in \mathbb{Z}_p} p^{2} = \sum_{k \ge 1} \frac{(k-1)!}{2^{k+1}} \lambda^k + e^{-2/\lambda} \left[-\log(\lambda) + \gamma_E + \log(2) \pm i\frac{\pi}{2} - \frac{\lambda}{4} + \frac{\lambda^2}{8} + \sum_{k \ge 1} \frac{(2k+1)!}{2^{2k+2}} \zeta(2k+1)\lambda^{2k+2} \right] + \mathcal{O}(e^{-4/\lambda})$$
New non-perturbative terms
$$\Sigma_m(p^2) = -\frac{1}{2} \log(2) - \frac{\gamma_E}{2} + \frac{1}{2} + \frac{1}{2} \log(\lambda) + \sum_{k \ge 1} \frac{(2k)!}{2^{2k+1}} \zeta(2k+1)\lambda^{2k+1} + \mathcal{O}(e^{-2/\lambda})$$

$$m \Sigma_m(p^2) \text{ gives non-perturbative corrections starting at } m = p e^{-1/\lambda}.$$

The Gross-Neveu OPE

- The exact large N result can only be computed because the Lagrangian is quadratic in the fermions.
- This will not work in QCD. What can we do then?

An OPE computation with condensates

I Goal: Compute the Wilson coefficients in the Gross-Neveu OPE

$$\begin{split} \int \mathrm{d}^2 x \, \mathrm{e}^{\mathrm{i} p x} \langle \psi(x) \overline{\psi}(0) \rangle &= C_I(p) + C_{\overline{\psi} \psi}(p) \langle \overline{\psi}(0) \psi(0) \rangle \\ &+ C_{\overline{\psi} \partial \psi}(p) \langle \overline{\psi}(0) \partial \!\!\!/ \psi(0) \rangle + C_{(\overline{\psi} \psi)^2}(p) \langle (\overline{\psi}(0) \psi(0))^2 \rangle + \boxed{\text{operators of higher dim}} \end{split}$$

Classical dimension of the operators (ψ has dimension 1/2):

• $\overline{\psi}\psi$ has dimension $1 \Rightarrow \langle \overline{\psi}\psi \rangle \propto m = p e^{-1/\lambda}$ (recall the term $m\Sigma_m$ in the self-energy).

 $\blacksquare \ \overline{\psi} \partial \!\!\!/ \psi \text{ and } (\overline{\psi} \psi)^2 \text{ have dimension } 2 \Rightarrow \langle O \rangle \propto m^2 = p^2 \mathrm{e}^{-2/\lambda}.$

The Gross-Neveu OPE

How can we compute Wilson coefficients?

$$S = \int \mathrm{d}^2 x \left[\underbrace{\mathrm{i}\overline{\psi} \cdot \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} \sigma^2}_{S_{\mathrm{free}}} + \underbrace{g_0 \sigma \overline{\psi} \cdot \psi}_{g_0 S_{\mathrm{int}}} \right]$$

Let's recall standard perturbation theory . . .

$$\begin{split} \langle \psi(x)\overline{\psi}(0)\rangle &= \int \mathcal{D}\psi \mathcal{D}\sigma \,\mathrm{e}^{\mathrm{i}S_{\mathsf{free}}} \mathrm{e}^{\mathrm{i}g_0S_{\mathsf{int}}}\psi(x)\overline{\psi}(0) \\ &= \int \mathcal{D}\psi \mathcal{D}\sigma \,\mathrm{e}^{\mathrm{i}S_{\mathsf{free}}} \left[1 + g_0\frac{\mathrm{i}S_{\mathsf{int}}}{1!} + g_0^2\frac{(\mathrm{i}S_{\mathsf{int}})^2}{2!} + \dots\right]\psi(x)\overline{\psi}(0) \end{split}$$

Equivalently, we can use Wick's theorem:

$$\langle \Omega | \mathcal{T} \psi(x) \overline{\psi}(0) | \Omega \rangle \equiv \int \mathcal{D} \psi \mathcal{D} \sigma \, \mathrm{e}^{\mathrm{i} S_{\mathsf{free}}} \psi(x) \overline{\psi}(0)$$

 \mathcal{T} denotes the time order product.

At order g_0^2 , Wick contraction of fields give two different diagrams

Ramon Miravitllas Mas (Wigner Research Centre)

Wick's theorem

Let us consider an arbitrary field with some indices μ_i at position x_i : $\phi^{\mu_i}(x_i) \equiv \phi_i$.

 $\overline{\phi_i \phi_j} = {
m free \ propagator}$

 $:\phi_i\phi_j:=ig|$ normal ordered product (put all annihilation operators to the right of creation operators)

$$\mathcal{T}\phi_1\phi_2\phi_3\phi_4 = \overleftarrow{\phi_1\phi_2\phi_3\phi_4 + \phi_1\phi_3\phi_2\phi_4 + \phi_1\phi_4\phi_2\phi_3}$$

normal ordered products of operators annihilate the vacuum

$$+ \phi_{1}\phi_{2}:\phi_{3}\phi_{4}:+\phi_{1}\phi_{3}:\phi_{2}\phi_{4}:+\phi_{1}\phi_{4}:\phi_{2}\phi_{3}:$$

+: $\phi_{1}\phi_{2}:\phi_{3}\phi_{4}+:\phi_{1}\phi_{3}:\phi_{2}\phi_{4}+:\phi_{1}\phi_{4}:\phi_{2}\phi_{3}$
+: $\phi_{1}\phi_{2}\phi_{3}\phi_{4}:$

In Grouss–Neveu:

$$\langle \Omega | : \psi(x)\overline{\psi}(y) : | \Omega \rangle$$
 is
 $\begin{cases} = 0 & \text{if using the perturbative vacuum,} \\ \neq 0 & \text{if using the true vacuum} \implies \text{gives condensates} \end{cases}$

Ramon Miravitllas Mas (Wigner Research Centre)

Diagrammatic computation of Wilson coefficients

We repeat the perturbative computation, but now we will leave some fields UNCONTRACTED to form the condensates:

 $\dot{\psi}(x)\overline{\psi}(y_1)\psi(y_2)\overline{\psi}(0)\sigma(y_1)\sigma(y_2)\langle\Omega|:\psi(y_1)\overline{\psi}(y_2):|\Omega\rangle \propto$ $\langle \overline{\psi}(0)\psi(0)\rangle + (\psi_1 - \psi_2) \langle \overline{\psi}(0)\partial \psi(0)\rangle + \mathcal{O}(y_1 - y_2)^2$ $\alpha e^{-1/\lambda}$ $\alpha e^{-2/\lambda}$ Original pert. diagram Leave two ψ uncontracted Diagrams at large N0 x u_2 y_1 y_1 y_2 $\psi(x)\overline{\psi}(y_1)\psi(y_1)\overline{\psi}(0)\overset{!}{\sigma}(y_1)\overset{!}{\sigma}(y_2)\langle\Omega|:\psi(y_2)\overline{\psi}(y_2):|\Omega\rangle \propto \langle\overline{\psi}(0)\psi(0)\rangle$ y_2 u_2 n y_1 y_1 0 when inserting bubbles

Let's put everything together

Still one diagram missing:

Spend a few weeks computing diagrams in dimensional regularization:

- Diagrams themselves are divergent.
- The bare coupling is divergent (β function).
- The bare fields appearing in the Lagrangian are divergent (Anomalous dimension of the field ψ).
- Local operators are also divergent (Anomalous dimension of the local operators $\overline{\psi}\psi$, $\overline{\psi}\partial\!\!\!/\psi$, $(\overline{\psi}\psi)^2$).

All divergences cancel in the final result.

Everything matches

After cancellation of divergences among all renormalization constants and diagrams:

The constant c₁ comes from the condensate, which is non-perturbative and cannot be fixed with this diagrammatic method.

[$\overline{\psi}\psi$] denotes the renormalized counterpart of the operator.

• Our result matches the exact self-energy at large N.

Conclusions

- Gross-Neveu is a toy model that shares some of the properties of QCD (asymptotic freedom, mass gap and chiral symmetry breaking).
- We computed the fermion two-point correlator and its self-energy, beyond perturbation theory, but at large N, using two methods:

Integrate out the ψ fields and treat the resulting Lagrangian in the auxiliary field σ .

В

Do a perturbative computation in the non-perturbative vacuum, including uncontracted terms present in Wick's theorem.

$$\mathcal{L} = \mathrm{i}\overline{\psi} \cdot \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2}\sigma^{2} + g_{0}\sigma\overline{\psi} \cdot \psi$$

Both results match, up to constant terms arising from the condensates.

This provides a precise test for the validity of the OPE and the method for computing Wilson coefficients.

Many thanks!

22 / 22