Integrability for higher-point functions in $\mathcal{N}=4$ SYM

Dennis le Plat
HUN-REN Wigner Research Centre for Physics
ELTE Particle Physics Seminar
Budapest, 09.04.2024

Motivation

Quantum field theories (QFT): mathematical framework for elementary particles and interactions

Goal: develop non-perturbative methods using integrability
\Rightarrow Consider toy models: CFT characterised by $\left\{\Delta_{i}, C_{i j k}\right\}$
Two-point function:

$$
\left\langle\mathcal{O}_{1}(x) \mathcal{O}_{2}(y)\right\rangle=\frac{\delta_{12}}{|x-y|^{2 \Delta}}
$$

Three-point function:

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}}{\left|x_{12}\right|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left|x_{23}\right|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}\left|x_{31}\right|^{\Delta_{3}+\Delta_{1}-\Delta_{2}}}
$$

Operator product expansion (OPE) for four-point functions:
(depends on conformal cross ratios)

AdS/CFT correspondence

AdS $_{d}$ String theory
strings on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

(d-1)-dim CFT

$$
\mathcal{N}=4 \mathrm{SYM} \text { in } d=4
$$

$$
\Phi^{I J}, \Psi_{\alpha}^{\prime}, \bar{\Psi}_{I \dot{\alpha}}, \mathcal{A}^{\mu}
$$ coupling constant g_{YM} gauge group $\operatorname{SU}(N)$

$$
\frac{R^{4}}{\alpha^{\prime 2}}=\lambda=g_{\mathrm{YM}}^{2} N
$$

$$
\text { consider planar limit } g_{\mathrm{YM}}^{\alpha-2} \rightarrow 0, N \rightarrow \infty \text { and } \lambda \text { finite ['t Hooft '74] }
$$

strong coupling α^{\prime} \qquad weak coupling λ
in the following: $g^{2}=\frac{\lambda}{16 \pi^{2}}$

The spectral problem and integrability in AdS/CFT

Anomalous dimension in $\mathcal{N}=4$ SYM $\quad \longleftrightarrow \quad$ Energy of string states

$$
\Delta=\Delta_{0}+g^{2} \gamma_{1}+\mathcal{O}\left(g^{4}\right)
$$

Spectral problem can be mapped to an integrable spin chain
Example: $\mathrm{SU}(2)$ sector
Choose vacuum $Z(\downarrow)$ and excitations $X(\uparrow)$
\rightarrow BMN-operator with two scalar excitations $\operatorname{Tr}\left(Z^{L-k-2} X Z^{k} X\right)$
\rightarrow planar one-loop dilatation operator \leftrightarrow Spin chain Hamiltonian $H_{0}=1-\mathbb{P}$
Bethe Ansatz leads to energy and S matrix in terms of rapidity u :

$$
E=\sum_{j=1}^{M} \frac{1}{u_{j}^{2}+\frac{1}{4}} \quad \text { and } \quad S\left(u_{j}, u_{k}\right)=\frac{u_{j}-u_{k}-i}{u_{j}-u_{k}+i} .
$$

For M excitations, the Bethe equations are given by

$$
\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)^{L} \prod_{j \neq k} S\left(u_{j}, u_{k}\right)=1 \quad \text { and } \quad \prod_{j=1}^{M}\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)=1 .
$$

Hexagon-like formula from the spin chain

Bethe state:

$$
\left|\Psi\left(p_{1}, p_{2}\right)\right\rangle=\sum_{1 \leq n<m \leq L} \underbrace{\left(e^{i p_{1} n+i p_{2} m}+S\left(p_{1}, p_{2}\right) e^{i p_{2} n+i p_{1} m}\right)}_{\psi(n, m)}|n, m\rangle
$$

Normalized cyclic state given by [Gaudin '76][Korepin '82]

$$
\mathcal{O}_{L}=\frac{\left|\Psi\left(p_{1}, p_{2}\right)\right\rangle}{\sqrt{\mathcal{G} L S_{12} \prod_{j}\left(u_{j}^{2}+\frac{1}{4}\right)}}
$$

Overlap:

$$
c_{123} \propto \sum_{1 \leq n<m \leq \ell_{12}} \psi_{1}(n, m) \quad \psi_{2}\left(L_{2}-m+1, L_{2}-n+1\right)
$$

\rightarrow Tailoring tools for three-point functions

[Escobedo, Gromov, Sever, Vieira '10]

Three-point functions from integrability

Three-point functions by hexagon operators

The splitting factor $\omega(\alpha, \bar{\alpha}, \ell)$ is given by

$$
\omega(\alpha, \bar{\alpha}, \ell)=(-1)^{|\bar{\alpha}|} \prod_{j \in \bar{\alpha}} e^{i p_{j} \ell} \prod_{\substack{k \in \alpha \\ j<k}} S\left(p_{j}, p_{k}\right) .
$$

Mirror corrections are hard to evaluate

$$
1=|0\rangle\langle 0|+\sum_{i} \int d \mu_{p}|p, i\rangle\langle p, i|+\ldots
$$

Symmetries of the three-point function

Choosing Z as the vacuum

Take $1 / 2$-BPS operator $\mathcal{O}(0)$ at $x=0$
\rightarrow want to construct three translated operators $\mathcal{O}(x)$
\rightarrow should preserve as much (super)symmetry as possible

Introduce the supertranslation generator

$$
\mathcal{T}=-i \epsilon_{\alpha \dot{\alpha}} P^{\alpha \dot{\alpha}}+\epsilon_{\dot{\alpha} a} R^{a \dot{a}}
$$

Use \mathcal{T} to construct one parameter family of operators starting from $\mathcal{O}(0)$

$$
\mathcal{O}_{t}=e^{t \mathcal{T}} \mathcal{O}(0) e^{-t \mathcal{T}}
$$

Constraining the hexagon form factor by symmetry

Charges commuting with \mathcal{T} form diagonal subalgebra $\mathfrak{p s u}(2 \mid 2)_{D}$
Write $\mathfrak{p s u}(2 \mid 2)^{2}$ excitations as $\chi^{a \dot{a}}=\xi^{a} \otimes \dot{\xi}^{\dot{a}}$
Use bootstrap principle $\langle\mathbf{h}| g|\Psi\rangle=0, g \in \mathfrak{p s u}(2 \mid 2)_{D}$
\rightarrow non-vanishing one-particle form factors for $Y, \bar{Y}, \mathcal{D}^{3 \dot{4}}, \mathcal{D}^{4 \dot{3}}$
\rightarrow two-particle form factors given by Beisert S matrix elements [Beisert ${ }^{066]}$

$$
\begin{aligned}
\left\langle\mathbf{h} \mid \chi^{a_{1} \dot{a}_{1}} \chi^{a_{2} \dot{a}_{2}}\right\rangle & =(-1)^{f}\left\langle\xi^{a_{2}} \xi^{a_{1}}\right| \mathcal{S}\left|\dot{\xi}^{\dot{a}_{1}} \dot{\xi}^{\dot{a}_{2}}\right\rangle \\
& =(-1)^{f} \dot{S}_{\dot{a}_{1} \dot{b}_{2}}^{\dot{b}_{2}} h_{\chi^{a_{1} b_{1}}} h_{\chi^{a_{2}} \dot{b}_{2}} .
\end{aligned}
$$

\rightarrow Multi-particle form factor:

$$
\left\langle\mathbf{h} \mid \chi^{a_{1} \dot{a}_{1}} \chi^{a_{2} \dot{a}_{2}} \ldots \chi^{a_{N} \dot{a}_{N}}\right\rangle=(-1)^{f}\left\langle\xi^{a_{N}} \ldots \xi^{a_{2}} \xi^{a_{1}}\right| \mathcal{S}\left|\dot{\xi}^{\dot{a}_{1}} \dot{\xi}^{\dot{a}_{2}} \ldots \dot{\xi}^{\dot{a}_{N}}\right\rangle .
$$

Constraining the scalar h-factor

Scalar factor h in the hexagon \longleftrightarrow dressing phase S_{0} in the S matrix

- Watson equation

Scattering with the full S matrix
$\langle\mathbf{h}| \mathbf{S}\left|\chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle=\left\langle\mathbf{h} \mid \chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle$

■ Decoupling condition for a singlet

- Cyclicity

\Rightarrow Fixes the h-factor!
\Rightarrow Similar construction in AdS_{3}

Higher-point functions

Natural way to tesselate four-point functions into hexagons

\rightarrow Need to include conformal cross-ratio dependence $v_{i, j k}$

Higher-point functions

Natural way to tesselate four-point functions into hexagons

\rightarrow Need to include conformal cross-ratio dependence $v_{i, j k}$

\rightarrow Need to include colour factors

Hexagon program

- Spectrum is fairly well-understood
- Three-point functions by hexagon operators for AdS_{5} for AdS_{3}
[Basso, Komatsu, Vieira '15]
[Eden, D ℓ P, Sonfdrini '21]
- In principle:
\rightarrow higher-point functions
[Eden, Sfondrini '17] [Fleury, Komatsu '17]
\rightarrow non-planar correlators

\rightarrow gluing corrections
[Basso, Komatsu, Vieira '15] [Eden, Sfondrini '15] [Fleury, Komatsu '17] . .

So far: Operators in rank-one sectors
\rightarrow How to generalise formalism to higher-rank sectors?
\rightarrow replace hexagon by nested wave function
[Basso, Coronado, Komatsu, Lam, Vieira, Zhong '17]

Plan

1 Motivation and review

2 Higher-rank sectors

3 Lagrangian insertion method

4 Conclusion and outlook

Higher-rank models

Consider the $\mathrm{SU}(3)$ sector at tree level with excitations X and Y
Consider the wave function $\left|\Psi\left(X_{1}, Y_{2}\right)\right\rangle$, with the scattering

$$
\left|X_{1} Y_{2}\right\rangle \quad \rightarrow \quad T_{12}\left|Y_{2} X_{1}\right\rangle+R_{12}\left|X_{2} Y_{1}\right\rangle
$$

with transmission and reflection amplitudes

$$
T_{12}=\frac{A_{12}-B_{12}}{2} \quad \text { and } \quad R_{12}=\frac{A_{12}+B_{12}}{2}
$$

Introduce a second wave function $\left|\Psi\left(Y_{1}, X_{2}\right)\right\rangle$ with initial ordering X, Y, scattering to

$$
\left|Y_{1} X_{2}\right\rangle \quad \rightarrow \quad T_{12}\left|X_{2} Y_{1}\right\rangle+R_{12}\left|Y_{2} X_{1}\right\rangle,
$$

and consider the sum

$$
\left|\Psi_{X Y}\left(p_{1}, p_{2}\right)\right\rangle=g_{X Y}\left|\Psi\left(X_{1}, Y_{2}\right)\right\rangle+g_{Y X}\left|\Psi\left(Y_{1}, X_{2}\right)\right\rangle
$$

with yet to be determined coefficients $g_{X Y}$ and $g_{Y X}$.

Extracting the coefficients from nesting

- Level-0 vacuum of length L
- M level-1 excitations move on level-0 vacuum with $S^{10}=e^{i p}$ and $S_{j k}^{11}=S\left(u_{j}, u_{k}\right)$
- k level- 2 excitations move on level-1 vacuum of length M with S^{21}, are scattered by S^{22} and have a creation amplitude f^{21}

$$
|Y(v)\rangle^{2}=f^{21}\left(v, u_{1}\right)\left|Y_{1} X_{2}\right\rangle+f^{21}\left(v, u_{2}\right) S^{21}\left(v, u_{1}\right)\left|X_{1} Y_{2}\right\rangle .
$$

Scattering leads to

$$
\begin{aligned}
& g_{X Y} T_{12}+g_{Y X} R_{12}=f^{21}\left(v, u_{2}\right) S^{11}\left(u_{1}, u_{2}\right) \\
& g_{X Y} R_{12}+g_{Y X} T_{12}=f^{21}\left(v, u_{1}\right) S^{21}\left(v, u_{2}\right) S^{11}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

\Rightarrow Coefficients $g_{X Y}$ and $g_{Y X}$ inherit dependence on the auxiliary Bethe roots v.

The nested hexagon

Cutting the $\mathrm{SU}(3)$ state

$$
\omega(\alpha, \bar{\alpha}, \ell) \psi_{\{\alpha\}} \psi_{\{\bar{\alpha}\}}=\left\{\begin{array}{l}
g_{X Y} \psi_{\left\{X_{u_{1}}, Y_{u_{2}}\right\}} \psi_{\{ \}}+g_{Y X} \psi_{\left\{Y_{u_{1}}, X_{u_{2}}\right\}} \psi_{\{ \}}+ \\
e^{i p_{2} \ell}\left(g_{X Y} \psi_{\left\{X_{u_{1}}\right\}} \psi_{\left\{Y_{u_{2}}\right\}}+g_{Y X} \psi_{\left\{Y_{u_{1}}\right\}} \psi_{\left\{X_{u_{2}}\right\}}\right)+ \\
e^{i p_{1} \ell}\left(g_{Y X} T_{12}+g_{X Y} R_{12}\right) \psi_{\left\{X_{L_{2}}\right\}} \psi_{\left\{Y_{u_{1}}\right\}}+ \\
e^{i p_{1} \ell}\left(g_{X Y} T_{12}+g_{Y X} R_{12}\right) \psi_{\left\{Y_{u_{2}}\right\}} \psi_{\left\{X_{u_{1}}\right\}},+ \\
e^{i\left(p_{1}+p_{2}\right) \ell}\left(g_{X Y} \psi_{\{ \}} \psi_{\left\{X_{u_{1}}, Y_{u_{2}}\right\}}+g_{Y X} \psi_{\{ \}} \psi_{\left\{Y_{u_{1}}, X_{u_{2}}\right\}}\right) .
\end{array}\right.
$$

\Rightarrow Agreement with free field theory

Double excitations

Consider the Konishi operator $\mathcal{K}=\frac{1}{\sqrt{3}} \operatorname{Tr}(X \bar{X}+Y \bar{Y}+Z \bar{Z})$

How can we describe \bar{Z} ?
\longrightarrow double excitations!

$$
|Y\rangle=\mathfrak{R}_{2}^{1} \mathfrak{R}_{\dot{\mathbf{j}}}^{2}|Z\rangle=\mathbf{c}^{1 \dagger} \mathbf{c}_{\dot{3}}|Z\rangle, \quad \text { and } \quad|\bar{Y}\rangle=\mathfrak{R}_{\dot{4}}^{\dot{3}} \mathfrak{R}_{\dot{j}}^{2}|Z\rangle=\mathbf{c}_{\dot{4}} \mathbf{c}^{2 \dagger}|Z\rangle .
$$

Can introduce double excitations with creation amplitude $\hat{f}\left(u_{1}, u_{2}, v, w\right)$ in the nested picture and $\hat{e}\left(u_{1}, u_{2}\right)$ in the matrix ansatz
Computations makes no further reference to the local structure of the state
\rightarrow cut the wave function in the usual way

Konishi example

Let us evaluate $\left\langle\mathcal{K} \mathcal{O}^{L_{2}} \mathcal{O}^{L_{3}}\right\rangle$ with $\mathcal{K}=\frac{1}{\sqrt{3}} \operatorname{Tr}(X \bar{X}+Y \bar{Y}+Z \bar{Z})$.
This yields at tree-level

$$
\mathcal{A}_{\mathrm{QFT}}=\frac{1}{\sqrt{3}} \sqrt{L_{2} L_{3}} .
$$

Using $g_{X \bar{X}}=g_{\bar{X} X}=-g_{Y \bar{Y}}=-g_{\bar{Y} Y}$ and $u_{2}=-u_{1}=\frac{1}{\sqrt{12}}, v=0, w=0$

$$
\mathcal{A}_{\text {hexagon }}^{\ell_{12}=1}(-u, u)=\frac{8 g_{X \bar{x}} u}{\left(u-\frac{i}{2}\right)\left(u+\frac{i}{2}\right)^{2}}=\frac{\sqrt{3}}{2} .
$$

We find agreement

$$
\mathcal{A}_{\mathrm{QFT}}=\left(u^{2}+\frac{1}{4}\right) L_{1} \sqrt{L_{2} L_{3}} \mathcal{A}_{\text {hexagon }} .
$$

\rightarrow Analogous results for $L_{1}=3,4, \ldots$ with $u=\frac{1}{2}, \frac{1}{2} \sqrt{1 \pm \frac{2}{\sqrt{5}}}, \ldots$

Plan

1 Motivation and review

2 Higher-rank sectors

3 Lagrangian insertion method

4 Conclusion and outlook

Lagrangian insertion method

Consider n-point function [Eden, Howe, West '99] [Eden, Petkou, Schubert, Sokatchev '01]...

$$
\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle=\int D \phi D A D \psi e^{\frac{i}{g^{2}} \int d^{4} x_{0} \mathcal{L}\left(x_{0}\right)} \mathcal{O}_{1} \ldots \mathcal{O}_{n}
$$

It follows that

$$
g^{2} \frac{\partial}{\partial g^{2}}\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle=-\frac{i}{g^{2}} \int d^{4} x_{0}\left\langle\mathcal{L}_{0} \mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle
$$

\rightarrow Introduce Lagrange operator as $L=2$ vacuum descendant
Integrability picture:

- Introduce double excitations, eg. $\left|\frac{Y}{Y}\right\rangle=|\bar{Z}\rangle,\left|\begin{array}{|c}\Psi^{\alpha \dot{4}}\end{array}\right\rangle=\left|F^{\alpha \beta}\right\rangle, \ldots$
- Yang-Mills Lagrangian $\operatorname{Tr}\left(F^{2}\right)$ build from four fermions

$$
\Psi_{1}^{4 \dot{2}}, \quad \Psi_{2}^{4 \mathrm{i}}, \quad \Psi_{3}^{3 \dot{2}}, \quad \Psi_{4}^{3 \dot{1}}
$$

with (infinite) rapidities u_{1}, \ldots, u_{4} and auxiliary rapidities
Idea: Cut correlators into hexagons

$$
\mathcal{L}=\operatorname{tr}\left(-\frac{1}{2} \mathcal{F}_{\alpha \beta} \mathcal{F}^{\alpha \beta}+\sqrt{2} g \Psi^{\alpha \prime}\left[\Phi_{I J}, \Psi_{\alpha}^{J}\right]-\frac{1}{8} g^{2}\left[\Phi^{I J}, \Phi^{K L}\right]\left[\Phi_{I J}, \Phi_{K L}\right]\right) .
$$

We aim to recover the Yang-Mills term

$$
\left|\mathcal{F}^{11} \mathcal{F}^{22}\right\rangle-2\left|\mathcal{F}^{12} \mathcal{F}^{12}\right\rangle+\left|\mathcal{F}^{22} \mathcal{F}^{11}\right\rangle
$$

We can build the field strength as double excitations

$$
\begin{aligned}
& \left|{ }_{\psi^{2 \dot{3}}}^{\Psi^{1 \dot{4}}}\right\rangle=\mathfrak{L}^{1}{ }_{2} \mathfrak{Q}^{2}{ }_{\dot{3}} \mathfrak{R}^{\dot{j}}{ }_{\dot{4}} \mathfrak{Q}^{2}{ }_{\mathbf{j}}|Z\rangle \quad=\mathbf{a}^{1 \dagger} \mathbf{a}^{2 \dagger}=\left|\mathcal{F}^{12}\right\rangle, \\
& \left|{ }_{\psi^{1 \dot{3}}}^{\Psi^{1 \dot{4}}}\right\rangle=\mathfrak{L}^{1}{ }_{2} \mathfrak{Q}^{2}{ }_{\mathbf{j}} \mathfrak{L}^{1}{ }_{2} \mathfrak{R}^{\dot{j}}{ }_{4} \mathfrak{Q}^{2}{ }_{\mathbf{j}}|Z\rangle=\mathbf{a}^{1 \dagger} \mathbf{a}^{1 \dagger}=\left|\mathcal{F}^{11}\right\rangle, \\
& \left|\begin{array}{|c|}
\Psi^{2 \dot{3}}
\end{array}\right\rangle=\mathfrak{Q}_{\dot{\mathfrak{j}}}^{2} \mathfrak{R}_{\dot{4}}^{\dot{3}} \mathfrak{Q}_{\dot{3}}^{2}|Z\rangle \quad=\mathbf{a}^{2 \dagger} \mathbf{a}^{2 \dagger}=\left|\mathcal{F}^{22}\right\rangle .
\end{aligned}
$$

$$
Z \xrightarrow{Q_{3}^{2}} \psi^{2} \otimes \phi^{\dot{2}} \overbrace{R_{4}^{3}}^{L_{2}^{1}} \psi^{2} \otimes \phi^{i}
$$

Lagrangian insertion: A first test

\Rightarrow First test: protected two-point function $\left\langle\mathcal{L}_{0} \mathcal{O}_{1}^{L} \mathcal{O}_{2}^{L}\right\rangle=0$

$$
\begin{aligned}
& \left\langle\mathcal{L}_{0} \mathcal{O}_{1}^{L} \mathcal{O}_{2}^{L}\right\rangle=2\left[\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} \Psi_{2}^{4 \dot{1}} \Psi_{3}^{3 \dot{2}} \Psi_{4}^{3 \dot{j}}\right\rangle+\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} \Psi_{4}^{3 \dot{1}}\right\rangle\left\langle\mathbf{h} \mid \Psi_{2}^{4 \dot{1}} \Psi_{3}^{3 \dot{2}}\right\rangle\right]+ \\
& \tilde{g}\left[\left\langle\mathbf{h} \mid D_{1}^{4 \dot{3}}\right\rangle\left\langle\mathbf{h} \mid \Psi_{2}^{4 \dot{1}} \Psi_{3}^{3 \dot{2}} D_{4}^{3 \dot{4}}\right\rangle+\left\langle\mathbf{h} \mid D_{2}^{4 \dot{3}}\right\rangle\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} D_{3}^{3 \dot{4}} \Psi_{4}^{3 \dot{1}}\right\rangle+\right. \\
& \left\langle\mathbf{h} \mid D_{3}^{3 \dot{4}}\right\rangle\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} D_{2}^{4 \dot{\dot{j}}} \Psi_{4}^{3 \dot{i}}\right\rangle+\left\langle\mathbf{h} \mid D_{4}^{3 \dot{4}}\right\rangle\left\langle\mathbf{h} \mid D_{1}^{4 \dot{3}} \Psi_{2}^{4 \dot{1}} \Psi_{3}^{3 \dot{2}}\right\rangle+ \\
& \left\langle\mathbf{h} \mid Y_{1}\right\rangle\left\langle\mathbf{h} \mid \Psi_{2}^{4 i} \Psi_{3}^{3 \dot{2}} \bar{Y}_{4}\right\rangle+\left\langle\mathbf{h} \mid \bar{Y}_{2}\right\rangle\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} Y_{3} \Psi_{4}^{3 i}\right\rangle+ \\
& \left.\left\langle\mathbf{h} \mid Y_{3}\right\rangle\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} \bar{Y}_{2} \Psi_{4}^{3 \dot{1}}\right\rangle+\left\langle\mathbf{h} \mid \bar{Y}_{4}\right\rangle\left\langle\mathbf{h} \mid Y_{1} \Psi_{2}^{4 \dot{1}} \Psi_{3}^{3 \dot{2}}\right\rangle\right]+ \\
& \tilde{g}^{2}\left[\left\langle\mathbf{h} \mid D_{1}^{4 \dot{\dot{j}}} D_{2}^{4 \dot{3}}\right\rangle\left\langle\mathbf{h} \mid D_{3}^{3 \dot{4}} D_{4}^{3 \dot{4}}\right\rangle+\left\langle\mathbf{h} \mid D_{1}^{4 \dot{3}} \bar{Y}_{2}\right\rangle\left\langle\mathbf{h} \mid Y_{3} D_{4}^{3 \dot{4}}\right\rangle+\right. \\
& \left.\left\langle\mathbf{h} \mid Y_{1} D_{2}^{4 \dot{3}}\right\rangle\left\langle\mathbf{h} \mid D_{3}^{3 \dot{4}} \bar{Y}_{4}\right\rangle+\left\langle\mathbf{h} \mid Y_{1} \bar{Y}_{2}\right\rangle\left\langle\mathbf{h} \mid Y_{3} \bar{Y}_{4}\right\rangle\right] \\
& \left\langle\mathcal{L}_{0} \mathcal{O}_{1}^{L} \mathcal{O}_{2}^{L}\right\rangle \rightarrow 4 \tilde{g}^{2}(1-2+1)=0
\end{aligned}
$$

Anomalous dimension

Consider two-point function

$$
\left\langle\mathcal{B}_{1}^{L} \mathcal{B}_{2}^{L}\right\rangle=\frac{1}{\left(a_{1}-a_{2}\right)^{2\left(\Delta_{0}+g^{2} \gamma_{1}+\ldots\right)}}=\frac{1}{\left(a_{1}-a_{2}\right)^{2 \Delta_{0}}}-2 \gamma_{1} \frac{\log \left(a_{1}-a_{2}\right)}{\left(a_{1}-a_{2}\right)^{2 \Delta_{0}}} g^{2}+\ldots,
$$

\Rightarrow Reproduce anomalous dimension $\left\langle\mathcal{L}_{0} \mathcal{B}_{1}^{L} \mathcal{B}_{2}^{L}\right\rangle \propto \gamma_{1}$
Finite momenta of physical excitations
\rightarrow length changing effects become apparent: introduce \mathbf{Z} markers
\rightarrow distribution of Z is not important here!
\rightarrow likely to be important for more complicated tessellations
\rightarrow cancellation of particle creation poles

Finally, we obtain

$$
\left\langle\mathcal{L}_{0} \mathcal{B}_{1}^{L} \mathcal{B}_{2}^{L}\right\rangle=-\frac{\gamma_{1}}{\sqrt{4!}},
$$

for lengths $L=4, \ldots, 9$.

Plan

1 Motivation and review

2 Higher-rank sectors

3 Lagrangian insertion method

4 Conclusion and outlook

Conclusions and Outlook

- Powerful tool to calculate correlation functions in $\mathcal{N}=4$ SYM
- Maintain the hexagon operator for higher-rank sectors
- import the g-coefficients from the nested Bethe ansatz
- local details of the wave functions are eclipsed
- Marginal deformations for certain classes of correlators \rightarrow Is there a hexagon operator for deformed theories?
- Lagrangeoperator in integrability formalism using double excitations
- four fermions build the Yang-Mills term

■ First tests of Lagrangian insertion method for hexagon tessellations

- protected two-point functions
- anomalous dimension from two-point functions
\rightarrow Loop corrections for more general two- and three-point functions?
\rightarrow Non-planar corrections?

