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Motivation

Quantum field theories (QFT): mathematical framework for elementary particles and
interactions

Goal: develop non-perturbative methods using integrability

⇒ Consider toy models: CFT characterised by {∆i ,Cijk}

Two-point function:

⟨O1(x)O2(y)⟩ =
δ12

|x − y |2∆

Three-point function:

⟨O1(x1)O2(x2)O3(x3)⟩ =
C123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x31|∆3+∆1−∆2

Operator product expansion (OPE) for
four-point functions:

(depends on conformal cross ratios)
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AdS/CFT correspondence

[Maldacena ’97]

AdSd String theory ←→ (d − 1)-dim CFT

strings on AdS5 × S5

←→

N = 4 SYM in d = 4

ΦIJ , ΨI
α, Ψ̄I α̇, Aµ

coupling constant gYM
gauge group SU(N)

R4

α′2 = λ = g2
YMN

consider planar limit gYM → 0, N →∞ and λ finite [’t Hooft ’74]

strong coupling α′ ←→ weak coupling λ

in the following: g2 = λ
16π2
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The spectral problem and integrability in AdS/CFT

Anomalous dimension in N = 4 SYM ←→ Energy of string states
∆ = ∆0 + g2γ1 +O(g4)

Spectral problem can be mapped to an integrable spin chain [Minahan, Zarembo ’02]

Example: SU(2) sector

Choose vacuum Z (↓) and excitations X (↑)
→ BMN-operator with two scalar excitations Tr(ZL−k−2XZ kX )

→ planar one-loop dilatation operator ↔ Spin chain Hamiltonian H0 = 1− P

Bethe Ansatz leads to energy and S matrix in terms of
rapidity u:

E =
M∑
j=1

1

u2j + 1
4

and S(uj , uk ) =
uj − uk − i

uj − uk + i
.

For M excitations, the Bethe equations are given by(
uj +

i
2

uj − i
2

)L∏
j ̸=k

S(uj , uk ) = 1 and
M∏
j=1

(
uj +

i
2

uj − i
2

)
= 1 .
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Hexagon-like formula from the spin chain

Bethe state:

|Ψ(p1, p2)⟩ =
∑

1≤n<m≤L

(
e ip1n+ip2m + S(p1, p2)e

ip2n+ip1m
)

︸ ︷︷ ︸
ψ(n,m)

|n,m⟩

Normalized cyclic state given by [Gaudin ’76][Korepin ’82]

OL =
|Ψ(p1, p2)⟩√

G L S12
∏

j (u
2
j + 1

4
)

Overlap:

c123 ∝
∑

1≤n<m≤ℓ12

ψ1(n,m) ψ2(L2 −m + 1, L2 − n + 1)

→ Tailoring tools for three-point functions [Escobedo, Gromov, Sever, Vieira ’10]
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Three-point functions from integrability

Three-point functions by hexagon operators [Basso, Komatsu, Vieira ’15]

A =
∑

v1,v2,...

∫
dµ{v}

∑
α∪ᾱ

ω(α, ᾱ, ℓ) ⟨h|α, v⟩ ⟨h|v̄ , ᾱ⟩

The splitting factor ω(α, ᾱ, ℓ) is given by

ω(α, ᾱ, ℓ) = (−1)|ᾱ|
∏
j∈ᾱ

e ipj ℓ
∏
k∈α
j<k

S(pj , pk ) .

Mirror corrections are hard to evaluate

1 = |0⟩ ⟨0|+
∑
i

∫
dµp |p, i⟩ ⟨p, i |+ . . .
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Symmetries of the three-point function

Choosing Z as the vacuum

Take 1/2-BPS operator O(0) at x = 0

→ want to construct three translated operators O(x)
→ should preserve as much (super)symmetry as possible

Introduce the supertranslation generator [Basso, Komatsu, Vieira ’15]

T = −iϵαα̇Pαα̇ + ϵȧaR
aȧ ,

Use T to construct one parameter family of operators starting from O(0)

Ot = et T O(0) e−t T .
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Constraining the hexagon form factor by symmetry

Charges commuting with T form diagonal subalgebra psu(2|2)D

Write psu(2|2)2 excitations as χaȧ = ξa ⊗ ξ̇ȧ

Use bootstrap principle ⟨h|g |Ψ⟩ = 0, g ∈ psu(2|2)D

→ non-vanishing one-particle form factors for Y , Ȳ , D34̇, D43̇

→ two-particle form factors given by Beisert S matrix elements [Beisert ’06]

⟨h|χa1 ȧ1χa2 ȧ2 ⟩ = (−1)f ⟨ξa2ξa1 |S|ξ̇ȧ1 ξ̇ȧ2 ⟩

= (−1)f Ṡ ḃ1 ḃ2
ȧ1 ȧ2

h
χa1 ḃ1

h
χa2 ḃ2

.

→ Multi-particle form factor:

⟨h|χa1 ȧ1χa2 ȧ2 . . . χaN ȧN ⟩ = (−1)f ⟨ξaN . . . ξa2ξa1 |S|ξ̇ȧ1 ξ̇ȧ2 . . . ξ̇ȧN ⟩ .

[Basso, Komatsu, Vieira ’15]
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Constraining the scalar h-factor

Scalar factor h in the hexagon ←→ dressing phase S0 in the S matrix

Watson equation
Scattering with the full S matrix

⟨h|S |χAȦ(p1)χ
BḂ(p2)⟩ = ⟨h|χAȦ(p1)χ

BḂ(p2)⟩

Decoupling condition for a singlet

Cyclicity

⇒ Fixes the h-factor! [Basso, Komatsu, Vieira ’15]

⇒ Similar construction in AdS3 [Eden, DℓP, Sonfdrini ’21]
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Higher-point functions

Natural way to tesselate four-point functions into hexagons [Eden, Sfondrini ’16]

[Fleury, Komatsu ’16]

→ Need to include conformal cross-ratio dependence vi ;jk
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Higher-point functions

Natural way to tesselate four-point functions into hexagons [Eden, Sfondrini ’16]

[Fleury, Komatsu ’16]

→ Need to include conformal cross-ratio dependence vi ;jk

→ Need to include colour factors [Eden, Jiang DℓP, Sfondrini ’17]
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Hexagon program

Spectrum is fairly well-understood

Three-point functions by
hexagon operators
for AdS5 [Basso, Komatsu, Vieira ’15]

for AdS3 [Eden, DℓP, Sonfdrini ’21]

In principle:

→ higher-point functions [Eden, Sfondrini ’17] [Fleury, Komatsu ’17]

→ non-planar correlators [Eden, Jiang, DℓP, Sfondrini ’17]

[Bargheer, Caetano, Fleury, Komatsu, Vieira ’17]

[Bargheer, Coronado, Vieira ’19] . . .

→ gluing corrections [Basso, Komatsu, Vieira ’15] [Eden, Sfondrini ’15]

[Fleury, Komatsu ’17] . . .

So far: Operators in rank-one sectors
→ How to generalise formalism to higher-rank sectors?
→ replace hexagon by nested wave function [Basso, Coronado, Komatsu, Lam, Vieira, Zhong ’17]
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Higher-rank models

Consider the SU(3) sector at tree level with excitations X and Y

Consider the wave function |Ψ(X1,Y2)⟩, with the scattering

|X1 Y2⟩ → T12 |Y2 X1⟩+ R12 |X2 Y1⟩ ,

with transmission and reflection amplitudes

T12 =
A12 − B12

2
and R12 =

A12 + B12

2
.

Introduce a second wave function |Ψ(Y1,X2)⟩ with initial ordering X ,Y , scattering to

|Y1 X2⟩ → T12 |X2 Y1⟩+ R12 |Y2 X1⟩ ,

and consider the sum

|ΨXY (p1, p2)⟩ = gXY |Ψ(X1,Y2)⟩+ gYX |Ψ(Y1,X2)⟩ ,

with yet to be determined coefficients gXY and gYX .
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Extracting the coefficients from nesting

Level-0 vacuum of length L

M level-1 excitations move on level-0 vacuum
with S10 = e ip and S11

jk = S(uj , uk )

k level-2 excitations move on level-1 vacuum
of length M with S21, are scattered by S22 and
have a creation amplitude f 21

|Y (v)⟩2 = f 21(v , u1) |Y1 X2⟩+ f 21(v , u2)S
21(v , u1) |X1 Y2⟩ .

Scattering leads to

gXYT12 + gYXR12 = f 21(v , u2)S
11(u1, u2) ,

gXYR12 + gYXT12 = f 21(v , u1)S
21(v , u2)S

11(u1, u2) .

⇒ Coefficients gXY and gYX inherit dependence on the auxiliary Bethe roots v .
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The nested hexagon

Cutting the SU(3) state

ω(α, ᾱ, ℓ)ψ{α}ψ{ᾱ} =



gXY ψ{Xu1
,Yu2

}ψ{} + gYX ψ{Yu1
,Xu2

}ψ{} +

e ip2ℓ
(
gXY ψ{Xu1

}ψ{Yu2
} + gYX ψ{Yu1

}ψ{Xu2
}

)
+

e ip1ℓ (gYX T12 + gXY R12)ψ{Xu2
}ψ{Yu1

} +

e ip1ℓ (gXY T12 + gYX R12)ψ{Yu2
}ψ{Xu1

} ,+

e i(p1+p2)ℓ
(
gXYψ{}ψ{Xu1

,Yu2
} + gYXψ{}ψ{Yu1

,Xu2
}

)
.

⇒ Agreement with free field theory [Eden, DℓP, Spiering ’22]
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Double excitations

Consider the Konishi operator K = 1√
3
Tr(XX̄ + Y Ȳ + ZZ̄)

How can we describe Z̄?

−→ double excitations!

|Y ⟩ = R1
2 R2

3̇
|Z⟩ = c1†c3̇ |Z⟩ , and |Ȳ ⟩ = R3̇

4̇
R2

3̇
|Z⟩ = c4̇c

2† |Z⟩ .

| Y
Ȳ
⟩ = R1

2 R2
3̇
R3̇

4̇
R2

3̇
|Z⟩ = c1†c2† |0⟩ = |Z̄⟩ ,

Can introduce double excitations with creation amplitude f̂ (u1, u2, v ,w) in the nested
picture and ê(u1, u2) in the matrix ansatz

Computations makes no further reference to the local structure of the state
→ cut the wave function in the usual way [Eden, DℓP, Spiering ’22]
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Konishi example

Let us evaluate ⟨KOL2 OL3 ⟩ with K = 1√
3
Tr(XX̄ + Y Ȳ + ZZ̄).

This yields at tree-level

AQFT =
1
√
3

√
L2L3 .

Using gXX̄ = gX̄X = −gY Ȳ = −gȲ Y and u2 = −u1 = 1√
12
, v = 0, w = 0

Aℓ12=1
hexagon(−u, u) =

8 gXX̄ u

(u − i
2
)(u + i

2
)2

=

√
3

2
.

We find agreement

AQFT =

(
u2 +

1

4

)
L1
√

L2L3 Ahexagon .

→ Analogous results for L1 = 3, 4, . . . with u = 1
2
, 1
2

√
1± 2√

5
, . . .
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Lagrangian insertion method

Consider n-point function [Eden, Howe, West ’99] [Eden, Petkou, Schubert, Sokatchev ’01]...

⟨O1 . . .On⟩ =
∫

DϕDADψ e
i
g2

∫
d4x0L(x0) O1 . . .On .

It follows that

g2 ∂

∂g2
⟨O1 . . .On⟩ = −

i

g2

∫
d4x0 ⟨L0 O1 . . .On⟩ .

→ Introduce Lagrange operator as L = 2 vacuum descendant

Integrability picture:

Introduce double excitations, eg. | Y
Ȳ
⟩ = |Z̄⟩ , | Ψα4̇

Ψβ3̇
⟩ = |Fαβ⟩ , . . .

Yang-Mills Lagrangian Tr(F 2) build from four fermions

Ψ42̇
1 , Ψ41̇

2 , Ψ32̇
3 , Ψ31̇

4 ,

with (infinite) rapidities u1, . . . , u4 and auxiliary rapidities

Idea: Cut correlators into hexagons
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On-shell Lagrangian [Eden, Heslop, Korchemsky, Sokatchev ’11]

L = tr

(
−
1

2
FαβFαβ +

√
2g ΨαI [ΦIJ ,Ψ

J
α]−

1

8
g2 [ΦIJ ,ΦKL][ΦIJ ,ΦKL]

)
.

We aim to recover the Yang-Mills term

|F11F22⟩ − 2 |F12F12⟩+ |F22F11⟩ .

We can build the field strength as double excitations

| Ψ14̇

Ψ23̇
⟩ = L1

2 Q2
3̇
R3̇

4̇
Q2

3̇
|Z⟩ = a1†a2† = |F12⟩ ,

| Ψ14̇

Ψ13̇
⟩ = L1

2 Q2
3̇
L1

2 R3̇
4̇
Q2

3̇
|Z⟩ = a1†a1† = |F11⟩ ,

| Ψ24̇

Ψ23̇
⟩ = Q2

3̇
R3̇

4̇
Q2

3̇
|Z⟩ = a2†a2† = |F22⟩ .

20 / 24



Motivation and review Higher-rank sectors Lagrangian insertion method Conclusion and outlook

Lagrangian insertion: A first test

⇒ First test: protected two-point function ⟨L0 OL
1 OL

2 ⟩ = 0 [Eden, DℓP, Spiering ’23]

⟨L0 OL
1 OL

2 ⟩ = 2
[
⟨h|Ψ42̇

1 Ψ41̇
2 Ψ32̇

3 Ψ31̇
4 ⟩+ ⟨h|Ψ42̇

1 Ψ31̇
4 ⟩ ⟨h|Ψ41̇

2 Ψ32̇
3 ⟩
]
+

g̃
[
⟨h|D43̇

1 ⟩ ⟨h|Ψ41̇
2 Ψ32̇

3 D34̇
4 ⟩+ ⟨h|D43̇

2 ⟩ ⟨h|Ψ42̇
1 D34̇

3 Ψ31̇
4 ⟩+

⟨h|D34̇
3 ⟩ ⟨h|Ψ42̇

1 D43̇
2 Ψ31̇

4 ⟩+ ⟨h|D34̇
4 ⟩ ⟨h|D43̇

1 Ψ41̇
2 Ψ32̇

3 ⟩+

⟨h|Y1⟩ ⟨h|Ψ41̇
2 Ψ32̇

3 Ȳ4⟩+ ⟨h|Ȳ2 ⟩ ⟨h|Ψ42̇
1 Y3 Ψ

31̇
4 ⟩ +

⟨h|Y3⟩ ⟨h|Ψ42̇
1 Ȳ2 Ψ

31̇
4 ⟩+ ⟨h|Ȳ4⟩ ⟨h|Y1 Ψ

41̇
2 Ψ32̇

3 ⟩
]
+

g̃2
[
⟨h|D43̇

1 D43̇
2 ⟩ ⟨h|D34̇

3 D34̇
4 ⟩+ ⟨h|D43̇

1 Ȳ2⟩ ⟨h|Y3 D
34̇
4 ⟩+

⟨h|Y1 D
43̇
2 ⟩ ⟨h|D34̇

3 Ȳ4⟩+ ⟨h|Y1 Ȳ2⟩ ⟨h|Y3 Ȳ4⟩
]

⟨L0 OL
1 OL

2 ⟩ → 4 g̃2 (1− 2 + 1) = 0

21 / 24



Motivation and review Higher-rank sectors Lagrangian insertion method Conclusion and outlook

Anomalous dimension

Consider two-point function

⟨BL1BL2 ⟩ =
1

(a1 − a2)2(∆0+g2γ1+... )
=

1

(a1 − a2)2∆0
− 2γ1

log(a1 − a2)

(a1 − a2)2∆0
g2 + . . . ,

⇒ Reproduce anomalous dimension ⟨L0 BL1 BL2 ⟩ ∝ γ1 [Eden, Gottwald, DℓP, Scherdin ’23]

Finite momenta of physical excitations
→ length changing effects become apparent: introduce Z markers
→ distribution of Z is not important here!
→ likely to be important for more complicated tessellations

→ cancellation of particle creation poles

Finally, we obtain

⟨L0 BL1 BL2 ⟩ = −
γ1√
4!
,

for lengths L = 4, . . . , 9.
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Conclusions and Outlook

Powerful tool to calculate correlation functions in N = 4 SYM

Maintain the hexagon operator for higher-rank sectors
import the g -coefficients from the nested Bethe ansatz
local details of the wave functions are eclipsed

Marginal deformations for certain classes of correlators
→ Is there a hexagon operator for deformed theories?

Lagrangeoperator in integrability formalism using double excitations
four fermions build the Yang-Mills term

First tests of Lagrangian insertion method for hexagon tessellations
protected two-point functions
anomalous dimension from two-point functions

→ Loop corrections for more general two- and three-point functions?
→ Non-planar corrections?
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