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Motivation and review
0000000000
Motivation

Quantum field theories (QFT): mathematical framework for elementary particles and
interactions

Goal: develop non-perturbative methods using integrability
= Consider toy models: CFT characterised by {A;, Cjy }

Two-point function:

1
(O1(x)Oa(y)) = ﬁ

Three-point function:

Ci23
<01(X1)02(X2)03(X3)> - |X12|A1+A2_A3 |X23|A2+A3_A1 |X31 |A3+A1—A2

Operator product expansion (OPE) for
four-point functions:

(depends on conformal cross ratios)
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AdS/CFT correspondence

[Maldacena '97]

AdS, String theory — (d — 1)-dim CFT
strings on AdSs x S® N =4SYMind=4
—> oY vl W, AR

coupling constant gym
gauge group SU(N)

2 =A= g2 N
consider planar limit gYM — 0, N — oo and A finite [t Hooft '74]

strong coupling o’ — weak coupling A
in the following: g2 = 16%
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The spectral problem and integrability in AdS/CFT

Anomalous dimension in A" =4 SYM — Energy of string states

A= Ao+ g%y + 0(g?)

Spectral problem can be mapped to an integrable spin chain [Minahan, Zarembo '02]

Example: SU(2) sector

Choose vacuum Z () and excitations X (1)

— BMN-operator with two scalar excitations Tr(Z-=*=2XZk X)

— planar one-loop dilatation operator <> Spin chain Hamiltonian Hp =1 — P

Bethe Ansatz leads to energy and S matrix in terms of

rapidity u:

1
E:Zung
j

j=t

up —ug — i
and S(uj, ux) = e B

i -
h up — U+

For M excitations, the Bethe equations are given by
i\ L M i
u; + L up+ £
<J?> HS(uj,uk):l and H <J?> =1.
Yi—=3/) jtk =1 \Y% ~ 2
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Hexagon-like formula from the spin chain

Bethe state:

Wit p2)) = >0 (M7 4 S(py, pa)e2 1) |, m)
1<n<m<L

¥ (n,m)

Normalized cyclic state given by [Gaudin '76][Korepin '82]

X X L,
; |
0, = [V (p1, p2)) 1 g |
2 |
G LS IT;(vf + 3) ]!
I
Overlap: : : o
| [/ /
camox Y i(n,m) ¢a(lo—m+1,Lo—n+1) oy
—_——
1<n<m<¥yy LZ ;( 3 |
— Tailoring tools for three-point functions [Escobedo, Gromov, Sever, Vieira '10]

5 /24



Motivation and review
[e]e]e]e] lele]elele)

Three-point functions from integrability

Three-point functions by hexagon operators [Basso, Komatsu, Vieira '15]
Y,y a a
— . R

ocZw(a,E,flz) ! Y x
aua = {uy,uy} \ / \ /

A= 3 /d,u{v}z w(e, @) (hla,v)  (h|7,a)

vl,v2,... aUa
The splitting factor w(«, @, £) is given by

w(a, &, 0) = (1)1 TT ™" TT Stpj, px) -
JjEa kEa
j<k

Mirror corrections are hard to evaluate

1=10) 01+ 3 [ duglp.i) puil + ..
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Symmetries of the three-point function

Choosing Z as the vacuum

a3

Take 1/2-BPS operator O(0) at x =0

— want to construct three translated operators O(x)
— should preserve as much (super)symmetry as possible

Introduce the supertranslation generator [Basso, Komatsu, Vieira '15]
T = —ieqa P 4 €5,R™,
Use T to construct one parameter family of operators starting from O(0)

Or=e'TO0)e 7.

7/24



Motivation and review
000000000

Constraining the hexagon form factor by symmetry

8 /24

Charges commuting with 7 form diagonal subalgebra psu(2|2)p
Write psu(2|2)? excitations as x¥ = £2 @ £2
Use bootstrap principle (h|g|W) =0, g € psu(2]2)p

— non-vanishing one-particle form factors for Y, Y, D3‘.’, ¥

— two-particle form factors given by Beisert S matrix elements [Beisert '06]
(hix 2y 2%) = (—1)7 (€267 8|67 £%) w
by by
= (71) 531132 h alblh apby * ot
* 54(0.0)
— Multi-particle form factor:
(hlx?1i X292 xonin) = (~1)f (€ g2en|S|EnER . éi)

[Basso, Komatsu, Vieira '15]
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Constraining the scalar h-factor

Scalar factor h in the hexagon — dressing phase Sp in the S matrix

m Watson equation h
Scattering with the full S matrix p: p.

(h]S ™ (p1)xB(p2)) = (MIx™(p1)x?E (p2))

P1 P2
P1P2Gi...Gn G1...Gn
—E
/ \ / \
. e . / /
m Decoupling condition for a singlet Res,, \ /\ ~ \ /\
p g P g P
—O-On /—\ —O0n s Som
\ 7 \ 7 -
. . / / / 7/
m Cyclicity - Y= \> )
= Fixes the h-factor! [Basso, Komatsu, Vieira '15]
= Similar construction in AdS3 [Eden, D£P, Sonfdrini '21]
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Higher-point functions

Natural way to tesselate four-point functions into hexagons [Eden, Sfondrini '16]
[Fleury, Komatsu '16]

KNP

— Need to include conformal cross-ratio dependence v;jx
- i ; ' M T
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Higher-point functions

Natural way to tesselate four-point functions into hexagons [Eden, Sfondrini '16]
[Fleury, Komatsu '16]

KNP

— Need to include conformal cross-ratio dependence v;jx

— Need to include colour factors [Eden, Jiang D£P, Sfondrini '17]
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Hexagon program

m Spectrum is fairly well-understood
> || Os ! L 05 ' L
m Three-point functions by N ~ ' PR ‘
hexagon operators . | | \ |
for AdS5 [Basso, Komatsu, Vieira '15] ¥O/‘ ¥O'/ oy
for AdS3 [Eden, DP, Sonfdrini '21] ! !

m In principle:
— higher—point functions [Eden, Sfondrini '17] [Fleury, Komatsu '17]

— non-planar correlators [Eden, Jiang, D£P, Sfondrini '17]
[Bargheer, Caetano, Fleury, Komatsu, Vieira '17]

[Bargheer, Coronado, Vieira '19] ...

— gluing corrections [Basso, Komatsu, Vieira '15] [Eden, Sfondrini '15]
[Fleury, Komatsu '17] ...

So far: Operators in rank-one sectors
— How to generalise formalism to higher-rank sectors?
— replace hexagon by nested wave function [Basso, Coronado, Komatsu, Lam, Vieira, Zhong '17]
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Plan

Higher-rank sectors
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Higher-rank models

Consider the SU(3) sector at tree level with excitations X and Y

Consider the wave function |W(Xi, Y2)), with the scattering
[X1Y2) —  Tu|YaX1)+ R [XaY1),
with transmission and reflection amplitudes

_ A1z — Bz and Ri» = A1z + B2

T,
12 2 2

Introduce a second wave function |W(Y7, X2)) with initial ordering X, Y, scattering to
[Y1X2) — T |X2 Y1)+ R [Y2X1),
and consider the sum

[Wxy(p1, p2)) = gxy |V(X1, Y2)) + gvx [V(Y1, X2)) ,

with yet to be determined coefficients gxy and gyx.
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Extracting the coefficients from nesting

m Level-0 vacuum of length L

m M level-1 excitations move on level-0 vacuum
: 10 _ i 1 _
with 5% = e and 5;° = S(uj, uk)

m k level-2 excitations move on level-1 vacuum
of length M with S21, are scattered by S22 and
have a creation amplitude 2!

|Y(v)>2 = fA(v, ) |Y1 X2) 4+ FPH(v, 1p)SH (v, 1) | X1 Ya) .
Scattering leads to

gxy Tiz + gyxRiz = £ (v, ) S (uy, 1) ,
gxy Riz + gyx Trz = (v, u1)S? (v, up) S™ (1, u2) .

= Coefficients gxy and gyx inherit dependence on the auxiliary Bethe roots v.
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Higher-rank sectors
[e]e]e] le]e]

The nested hexagon

) 0(@,8,412) 01,71 623) ) % ‘
aVa={u;,u}
YUY = {us u} y 7

Cutting the SU(3) state

>
~i

8xY Yixy, Y, 11} + 8vX Uiy, X, 1001 T
eir2? (ng Vix 1Vt T 8vx ¥ Yul}w{xu2}> +
w(er, @ OPrayiay = § €™ (gvx Tz + gxv R12) ¥x,,} ¥ (v} +

P (gxy Tiz +gvx Ri2)¥(v,, ¥ (x, )+

elPrtp)t (gXYd){}’Z){xul,vuZ} + gvxw{}w{yul,qu}) .

= Agreement with free field theory [Eden, D£P, Spiering '22]
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Double excitations

Consider the Konishi operator K = %Tr(X)_( +YY + ZZ)

Rl , ¢'@¢

How can we describe Z? 2 ) 2
R ) / \. ] i 3

Z—B-d>2®¢- [0} o — 7

— double excitations! )
} $*@ ¢! %
lY) =Y, R 12) =clie;|2) and |Y) =93, R 12) = ;T |2) .
|\l/(> = %12 9%23 9‘%34 %23 |Z) = et 0)=12),

Can introduce double excitations with creation amplitude )?(ul7 up, v, w) in the nested
picture and é(u1, up) in the matrix ansatz

Computations makes no further reference to the local structure of the state
— cut the wave function in the usual way [Eden, D£P, Spiering '22]
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Konishi example

Let us evaluate (K Of2 O13) with K = %Tr(X)_( +YY+22).

This yields at tree-level
1
AQFT = % Vils.

Using gy = gxx = —8yy = —8yy and up = —uy =

l12=1
héiagon(iu’ u) =

8gxx u _ V3
(= D+ 57 2

We find agreement

1
Aqrt = (U2 + Z) L1V L2L3 Apexagon -

— Analogous results for L1 = 3,4, ... with u= %7% 14+ 2
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Lagrangian insertion method
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Lagrangian insertion method

Consider n-point function [Eden, Howe, West '99] [Eden, Petkou, Schubert, Sokatchev '01]...

E% [ d*x0L(x0)

(01...On>:/D¢DAD¢e O1...0,.

It follows that

) i
g2@<01...(9n) :f?/d“xo (Lo O1...0,) .

— Introduce Lagrange operator as L = 2 vacuum descendant
Integrability picture:
- . Y = ad
m Introduce double excitations, eg. | J) = |Z) , |$’53> = |FaBy ...
m Yang-Mills Lagrangian Tr(F2) build from four fermions
42 4i 32 31
wl ’ WZ ’ lj13 ’ ‘U4 )
with (infinite) rapidities u1,... , us and auxiliary rapidities

Idea: Cut correlators into hexagons
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On-shell Lagrangian [Eden, Heslop, Korchemsky, Sokatchev '11]

1
L =tr (*5}"&5}—0‘5 +V2g Vo, vl] - g 2 (oM, o [0, ¢KL])

We aim to recover the Yang-Mills term

‘]:11]:22> ) |]_-12]_-12> + I]:22]:11> .

We can build the field strength as double excitations

14 3
| ) = gh, 9% W 9% 12) =alta?l = |F12y |
14 3
| vs) =2 Q% ¢ %, 9%12)  =a'fall = |71,
| W“) Q% 0%, 0%|2) = a2fa?l = | 722 |
, it P ® ¢
Q:l wz ®¢2
R} ™ ¢? ¢!
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Lagrangian insertion: A first test
= First test: protected two-point function (Lg Of Oé) =0 [Eden, D£P, Spiering '23]

(Co0t0h) = 2 [ wivPwil) 4 (v wi) hjvil v |+
& [(hIDf*) (h|w w3 D) + (h|DF?) (h|wi? DI wil) +
(h[D3*) (h1W1* DF Wit + (D) (h|Df* Wit WE) +
(h YD) (hW3E W3 Ya) + (bl V2 ) (hWf2 V3 w3 +
(hlYs) (Wi Vo Wil + (bl Va) (n]va w3l W) +
& [(nDf* D) (n|D3* D}*) + (h|DFE V2) (n] va D) +

(hl Y1 DS) (| D3* Va) + (h[ Y3 V2) (| Y5 Va) |

(Lo OLOLY 5452 (1—-241)=0
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Anomalous dimension

Consider two-point function

1 1 log(ar — a2)
BiBky = = — 27 24
(BB3) (a1 — 32)2(A0+g271+...) (a1 — a2)?20 / (a1 — a)2B0 g )
= Reproduce anomalous dimension (£ BlL B2L> x 71 [Eden, Gottwald, D£P, Scherdin '23]

Finite momenta of physical excitations

— length changing effects become apparent: introduce Z markers
— distribution of Z is not important here!

— likely to be important for more complicated tessellations

— cancellation of particle creation poles

Finally, we obtain

L BLBL :_’7/1 i
(0 1 2> \/ﬂ

for lengths L =4,...,9.
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Conclusions and Outlook

m Powerful tool to calculate correlation functions in N' = 4 SYM

m Maintain the hexagon operator for higher-rank sectors

m import the g-coefficients from the nested Bethe ansatz
m local details of the wave functions are eclipsed

m Marginal deformations for certain classes of correlators
— Is there a hexagon operator for deformed theories?

m Lagrangeoperator in integrability formalism using double excitations
m four fermions build the Yang-Mills term

m First tests of Lagrangian insertion method for hexagon tessellations

m protected two-point functions
m anomalous dimension from two-point functions

— Loop corrections for more general two- and three-point functions?
— Non-planar corrections?
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