The fate of chiral symmetry in the quark-gluon plasma

Tamás G. Kovács

Eötvös Loránd University, Budapest, Hungary and Institute for Nuclear Research, Debrecen, Hungary

ELTE, May 21, 2024 based on TGK Phys. Rev. Lett. **132** (2024) 131902

Symmetries of QCD and their realization

partition function

$$Z = \int \mathscr{D}U \prod_{f} \det \left(D[U] + m_{f} \right) \cdot e^{-S_{g}[U]}$$

• $m_{\rm u} \approx m_{\rm d} pprox 0$

- Symmetries: $SU(2)_V \times SU(2)_A \times U(1)_V \times U(1)_A$
 - Axial: left-right opposite phase
 - U(1) same for two flavors
 - SU(2) mixes two flavors
- U(1)_A anomalous
- $SU(2)_A$ spontaneously broken below T_c

The $SU(2)_{A}$ symmetry

• Order parameter of SU(2)_A

$$\langle \bar{\psi}\psi \rangle \propto \frac{1}{V}\sum_{i}\frac{1}{\lambda_{i}+m} \propto \int_{-\Lambda}^{\Lambda}d\lambda \frac{m}{\lambda^{2}+m^{2}}\cdot\rho(\lambda)$$

- λ_i eigenvalues of the Dirac operator
- imaginary opposite sign pairs or zeros
- ρ(λ) spectral density of Dirac operator
- $\langle \bar{\psi}\psi \rangle$ dominated by spectral part $|\lambda| \leq m$

•
$$\lim_{m \to 0} \langle \bar{\psi} \psi \rangle \propto \rho(0)$$
 Banks-Casher formula

The finite temperature transition Standard picture

Below T_c

- Chiral symmetry broken
- Order parameter: $\rho(0) \neq 0$

The finite temperature transition

Standard picture

Below T_c

- Chiral symmetry broken
- Order parameter: $\rho(0) \neq 0$

Above T_c

- Chiral symmetry restored
- Order parameter $\rho(0) = 0$
- (Pseudo)gap (lowest Matsubara mode)

spectral density at 0 \iff realization of chiral symmetry

Spectral density at $T = 1.1 T_c$ from the lattice

quenched: quark back reaction omitted

Spike at zero in the spectral density!

Edwards et al. 2000; Alexandru & Horvath 2015; Kaczmarek, Mazur, Sharma 2021

- Why is there a spike at zero?
- Suppression by the quark determinant? (dynamical quarks)
- How does the peak influence the realization of chiral symmetry as $m \rightarrow 0$?

Spectral peak \leftarrow instantons

- Instanton: special gauge field configuration with topological winding
- A "lump" of action localized in space-time
- (Anti)instanton

 \rightarrow zero eigenvalue of D(A) with (-)+ chirality eigenmode

- Topological charge $Q = n_i n_a$ $\rightarrow |Q|$ exact zero eigenvalues (Atiyah-Singer index theorem)
- Its fluctuations $\chi = \frac{1}{V} \langle Q^2 \rangle$ (topological susceptibility)

Two instantons

- Topological charge Q = 2
- $\bullet \ \rightarrow \ two \ zero \ modes$

- An instanton and an antiinstanton
 - Topological charge Q = 0
 - No exact zero eigenvalues
 - Symmetric splitting from zero controlled by distance of I and A

- $T = 1/L_t \rightarrow$ High T: small temporal size large instantons "squeezed out" in the temporal direction
- Dilute gas of instantons and antiinstantons
- Zero modes exponentially localized
- Mixing (splitting) of I-A near zero modes small
- n_i instantons n_a antiinstantons $\rightarrow |n_i - n_a|$ exact zero modes + mixing near zero modes

Quenched approximation \rightarrow free instanton gas lattice result

• Free instanton gas:

(anti)instanton number distribution iid Poisson:

$$p(n_{\rm i}, n_{\rm a}) = {\rm e}^{-\chi V/2} \frac{(\chi V/2)^{n_{\rm i}}}{n_{\rm i}!} \cdot {\rm e}^{-\chi V/2} \frac{(\chi V/2)^{n_{\rm a}}}{n_{\rm a}!}$$

 Number distribution of exact and near zero modes in the peak consistent with free instanton gas Vig R. & TGK 2021

Including dynamical quarks (quark determinant)

$$Z = \int \mathscr{D}U \prod_{f} \det \left(D[U] + m_{f} \right) \cdot e^{-S_{g}[U]}$$

- Light dynamical quarks are expected to
 - Suppress small Dirac eigenvalues (→ fewer instantons)
 - Introduce I-A interaction (→ pull pairs closer)
- What happens to the spectral peak and χ symm if $m \rightarrow 0$?
- Dirac operator with exact chiral symmetry needed
 - Exact zero eigenvalues
 - Resolve peak in spectral density
- Direct lattice simulation with det presently not possible

Instanton-based random matrix model (quenched)

work by Shuryak, Diakonov, Verbaarschot et al.

- Model of Dirac operator in the subspace of zero modes
- Quenched ideal instanton gas:
 - Choose n_i and n_a from independent Poisson distributions of mean $\chi_0 V/2$.
 - Place (anti)instantons randomly in 3d box of size L^3 ($V = L^3/T$).
 - Construct $(n_i + n_a) \times (n_i + n_a)$ random matrix:

•
$$w_{ij} = A \cdot \exp(-\pi T \cdot r_{ij})$$

 r_{ij} is the distance of instanton *i* and antiinstanton *j*.

Properties of the random matrix Dirac operator

- $\operatorname{rank}(D) = 2\min(n_i, n_a) \Rightarrow |n_i n_a|$ zero modes
- $D\gamma_5 + \gamma_5 D = 0 \iff$ chiral symmetry
- Generator of chiral symmetry

• Structure of *D*: tight-binding Hamiltonian on bipartite lattice (zero on-site energy, off-diagonal disorder)

Fit parameters to quenched lattice Dirac spectrum

$T = 1.1 T_c$ overlap Dirac spectrum

- Two parameters:
 - χ_0 instanton density: from exact zero modes $\rightarrow \chi_0 = \langle Q^2 \rangle / V$
 - A prefactor of the exponential mixing between zero modes

• Fit A to distribution of Dirac eigenvalues

L = 2.4 fm fit

lowest eigenvalue:

Fit parameters to quenched lattice Dirac spectrum

$T = 1.1 T_c$ overlap Dirac spectrum

- Two parameters:
 - χ_0 instanton density: from exact zero modes $\rightarrow \chi_0 = \langle Q^2 \rangle / V$
 - A prefactor of the exponential mixing between zero modes

• Fit A to distribution of Dirac eigenvalues

lowest eigenvalue:

L = 2.4 fm fit L = 3.5 fm prediction

Random matrix model with dynamical quarks

• On the lattice additional weight $det(D+m)^{N_f}$

•
$$\det(D+m) = \prod_{zmz} (\lambda_i + m) \times \prod_{bulk} (\lambda_i + m)$$

• Bulk weakly correlated with zero mode zone

• Approximate det with
$$\prod_{zmz} (\lambda_i + m)$$

• Consistently included in RM model:

$$P(n_{i}, n_{a}) = \underbrace{e^{-\chi_{0}V} \frac{1}{n_{i}!} \frac{1}{n_{a}!} \left(\frac{\chi_{0}V}{2}\right)^{n_{i}+n_{a}}}_{\text{free instanton gas}} \cdot \det(D+m)^{N_{f}}$$

Random matrix model simulation results for $N_f = 2$

Explanation – free instanton gas?

• If
$$|\lambda_i| \ll m \implies \prod_i (\lambda_i + m) \approx m^{n_i + n_a}$$

det depends on number of topological objects, not on their type or location

•
$$\left(rac{\chi_{\scriptscriptstyle 0} V}{2}
ight)^{n_{\rm i}+n_{\rm a}} \cdot \det(D+m)^{N_{\rm f}} ~\approx~ \left(rac{m^{N_{\rm f}}\chi_{\scriptscriptstyle 0} V}{2}
ight)^{n_{\rm i}+n_{\rm a}}$$

- Distribution of number of (anti)instantons still Poisson
- Free gas, but susceptibility suppressed as $\chi_0
 ightarrow m^{N_f} \chi_0$
- What happens in the chiral limit, if *m* becomes smaller?

$|\lambda| \ll m$ even in the chiral limit

• Quark determinant for n_i instantons and n_a antiinstantons:

$$\det (D+m)^{N_{f}} = \prod_{n_{i},n_{a}} (\lambda_{i}+m)^{N_{f}} = m^{N_{f}(n_{i}+n_{a})} \cdot \prod_{i=1}^{\# pairs} \left(1 + \frac{\lambda_{i}^{2}}{m^{2}}\right)^{N_{f}}$$

- smaller m
- $\rightarrow m^{N_f(n_i+n_a)}$ suppresses instantons
- \rightarrow instanton gas more dilute
- \rightarrow smaller matrix elements
- \rightarrow smaller eigenvalues $\implies |\lambda| \ll m$ even in the chiral limit
- \rightarrow free instanton gas

N/

Spectral density - full QCD vs. ideal instanton gas

dynamical - determinant included

quenched — no determinant, but top. susceptibility scaled with m^{N_f}

Instanton-antiinstanton molecules

density of closest opposite charge pairs at given distance

Spectral density singular at the origin for $V \rightarrow \infty$ RM model simulation, parameters from quenched $T = 1.1 T_c$ overlap spectrum

If $\rho(\lambda) \propto \lambda^{\alpha}$ then $\tilde{\rho}(\log(\lambda)) \propto e^{(1+\alpha)\log(\lambda)}$ fit: $\alpha = -0.775(5) \Rightarrow$ Matteo's talk

Banks-Casher for a singular spectral density?

"Banks-Casher" for singular spectral density

free instanton gas contribution dominates condensate

$$\langle \bar{\psi}\psi \rangle \approx \langle \sum_{i} \frac{m}{m^{2} + \lambda_{i}^{2}} \rangle \approx \underbrace{\underbrace{\left(\begin{smallmatrix} \operatorname{avg. number of in-} \\ \operatorname{stantons in free gas} \end{smallmatrix}\right)}_{m^{N_{t}}\chi_{0}V} \cdot \frac{1}{m} = m^{N_{f}-1}\chi_{0}V$$
$$|\lambda_{i}| \ll m$$

Fate of $U(1)_{A}$ symmetry as $m \rightarrow 0$

- Free IA gas eigenvalues $|\lambda_i| \ll m$ for any quark mass
- $U(1)_A$ breaking susceptibility $\chi_{\pi} \chi_{\delta} = ?$

• HotQCD: $\chi_{\pi} - \chi_{\delta} \neq 0$ (staggered) \rightarrow no restoration above T_c

• JLQCD: $\chi_{\pi} - \chi_{\delta} = 0$ (domain wall and overlap) \rightarrow restored above T_c

•
$$\chi_{\pi} - \chi_{\delta} \approx \langle \sum_{i} \frac{m^2}{(m^2 + \lambda_i^2)^2} \rangle \approx \underbrace{\underbrace{(avg. number of in-)}_{\text{stantons in free gas}} \cdot \frac{1}{m^2} = m^{N_f - 2} \chi_0 V$$

• Contribution of IA molecules in $m \rightarrow 0$ limit: $|\lambda_i| \gg m$

- Contribution to $\langle \bar{\psi} \psi \rangle \propto m$
- Contribution to $\chi_{\pi} \chi_{\delta} \propto m^2$

Conclusions

- At high *T* non-interacting degrees of freedom: free instantons (+ IA molecules)
- Dirac spectral density has singular peak at zero at any finite *T*, for any nonzero quark mass
- Chiral symmetry restoration nontrivial (anomaly remains)
- Even though SU(N_f)_A restored, order of the m→0 and V→∞ limit can be important
- Chiral limit with *N*_f degenerate light quarks:
 - $\langle \bar{\psi}\psi \rangle \propto m^{N_{f}-1}$ agrees with small *m* expansion of the free energy Kanazawa and Yamamoto (2015)

•
$$\chi_{\pi} - \chi_{\delta} \propto m^{N_{\rm f}-2}$$