Soft Signals at the high luminosity LHC

Run Number: 311287, Event Number: 23231681

Date: 2016-10-23 12:56:09 UTC

Analysis strategies *extremely sophisticated*

<u>This example:</u> 31 signal regions + corresponding control regions

 $N_{jets} = 13$ ATLAS arXiv:1708.02794

LHC on the intensity frontier

Precision measurements often challenging, but huge particle yields

LHC on the intensity frontier

Precision measurements often challenging, but huge particle yields

Sensitive to tiny couplings!

Complimentary sensitivity for signals with

- Low rates
- Relatively low backgrounds (online + offline)

New directions / priorities for the LHC

New directions / priorities for the LHC

The case for more theory involvement:

- Online selection increasingly sophisticated
- Resources are limited (bandwidth and people)

Complementarity (LHCb, Belle II, NA62, ...)

A sense of urgency:

- Decisions before data taking
- Phase II upgrade design happening now

Special runs (e.g. Pb-Pb)

Long Lived particles

Why start with long-lived particles?

Pragmatic reason: Displaced decay gives new handle to reject backgrounds

Theory reason: Light particles tend to be long-lived

Plot by Brian Shuve

Long Lived particles

Beyond the Standard Model example: Sterile neutrino/Heavy Neutral Lepton

$$\Gamma \sim \frac{g^4}{64\pi^2} \left(\frac{m_N}{m_W}\right)^4 m_N$$

For mN < 5 GeV: must decay displaced

Another simple example

Scalar singlet extension of Higgs sector: (Most minimal extension of the Standard Model)

 $\mu\,\phi H^\dagger H$

<u>Production</u>: (for m_φ < m_B - m_K)

 $Br[B \to X_s \phi] \approx 6 \ s_{\theta}^2 \ (1 - m_{\phi}^2 / m_B^2)^2$

R. S. Willey and H. L. Yu (1982)
R. Chivukula and A. V. Manohar (1988)
B. Grinstein, L. J. Hall, and L. Randal (1988)
B. Batell, M. Pospelov, A. Ritz (0911.4938)
...

Another simple example

Scalar singlet extension of Higgs sector: (Most minimal extension of the Standard Model)

Decay:

 $\mu \, \phi H^{\dagger} H$

Things to do with the phase II upgrade

Experimental

physics

CODEX-b experiment (Higgs & B decays)

Trigger basics

Only 0.0025 % of all collisions get recorded

Triggers are critical to the experimental programs at ATLAS, CMS and LHCb!

Currently only tracking at HLT step

Detector layout (CMS)

Derived from CMS Detector Slice from CERN

Detector layout as seen by L1 trigger

Displaced decay looks prompt to the L1 trigger, and is unlikely to be recorded

Triggers at HL-LHC

~200 collisions per event in HL-LHC conditions

Major upgrades to the trigger being developed:

- More bandwidth
- More capabilities → tracking at L1 trigger!

What else can we do beyond just pile-up mitigation?

CMS Level 1 track trigger

0.2 0.6 0.8 1.0 1.2 0.0 0.4 1.4 _ 1.6 r [mm] 1200 -_ 1.8 1000 -_ 2.0 800 -2.2600-_ 2.4 _ 2.6 400- $-\frac{2.8}{-3.0}$ 200 4.0 η 0 z [mm] 500 2500 1000 1500 2000 0 Each module independently measures "stub". fail pass the p_T of the stubs $\odot \vec{B}$ 1 ÷ 4 mm ≤**1**00 μm Only stubs with $p_T > 2$ GeV are used in $p_T < 2 \text{ GeV}$ $p_T > 2 \text{ GeV}$ track reconstruction

Phase II tracker layout

16

CMS-TDR-014

Displaced tracks

Key point: For moderate displacements, stubs are still reconstructed

In principle, track trigger could find displaced tracks

Y. Gershtein: arXiv 1705.04321 CMS PAS FTR-18-018

Toy detector simulation

Procedure:

- 1. Propagate track (including multiple scattering)
- 2. Find the stubs (smearing for resolution)
- 3. Fit a helix to the stubs (require at least 5 stubs)
- 4. Reconstruct a vertex

Y. Gershtein: arXiv 1705.04321

- Y. Gershtein, SK: arXiv 1907.00007
- Y. Gerhstein, SK, R. Redigolo: arXiv 2012.07864

Signal & Background

Signal: displaced dimuon resonance

 $B \to X_s \phi$ $\rightarrow \mu\mu$

Backgrounds:

- Vertex quality & muon matching Fake vertices •
- Kaons $(K_S \rightarrow \pi^+ \pi^-)$ • \rightarrow
- Muon matching
- Cut vertex radial distance (L_{xy}>1.5 cm) **B**-mesons \rightarrow

Goal: suppress background factor of 10⁻⁴ with minimal cuts on signal

Y. Gershtein, SK: arXiv 1907.00007

Trigger yield

Total yields for our (Level-1) trigger strategy, for different pT thresholds

Competitive with LHCb, much better than a (generous) normal dimuon trigger

Y. Gershtein, SK: arXiv 1907.00007

Projected sensitivity

Model independent

Reach:

Scalar mixing with Higgs

CMS reach is a bit optimistic, since "junk" backgrounds are not modeled LHCb reach (optimistically) rescaled from current limits

J. Evans, A. Gandrakota, SK, H. Routray: arXiv 2008.06918

Other applications

Heavy Neutral Leptons, Inelastic Dark Matter Axion-like particles Exotic Higgs decays Dark Showers Pair production of LLPs

Y. Gerhstein, SK, R. Redigolo: arXiv 2012.07864

Other applications

Multi-track DV

Selection

- 4 reconstructed tracks (pT > 2 GeV) •
- Good quality vertex •
- $L_{xy} > 3 \text{ cm}$ •

Backgrounds

- Fake vertices \geq 4 tracks
- **B**-mesons • \rightarrow
- Material interactions \rightarrow

Vertex distance

??

Axion-like particles Exotic Higgs decays

Experimentally very challenging: must perform a preliminary study to verify that it is worth the effort

Material interactions

Standard Model particles create secondaries in detector material

Must verify that this does not swamps the trigger bandwidth!

Interactions with detector material

Y. Gerhstein, SK, R. Redigolo: arXiv 2012.07864

Interactions with detector material

Fold in particle production rate

Rate is likely manageable

Baakgroutiverates sumptions:

•	Assu	min track p_T	$2 { m GeV}$	$3 { m GeV}$	$4 \mathrm{GeV}$
•	No n	secondaries (kHz)	25	5	1
•	No is	B-mesons (kHz) fake vertices (kHz)	$\begin{array}{c} 0.13 \\ 0.04 \end{array}$	$\begin{array}{c} 0.04 \\ 0.01 \end{array}$	$\begin{array}{c} 0.01 \\ 0.004 \end{array}$

Y. Gershtein, SK, D. Redigolo: in progress

Results

Qualitative gain in sensitivity appears possible

Y. Gerhstein, SK, R. Redigolo: arXiv 2012.07864 ATLAS muon ROI trigger: arXiv 1811.07370

Results

Example: $\mathcal{L}_{S} \supset -\frac{1}{2}\tilde{m}_{S}^{2}S^{2} - \mu SH^{\dagger}H - \frac{1}{2}\lambda_{SH}S^{2}H^{\dagger}H - V_{int}(S)$ $h \rightarrow SS$ \downarrow hadrons

Things to do with the phase II upgrade

For particles with very long lifetimes, trigger and background challenges cannot always be overcome

Need an external detector, shielded by a very thick hadron absorber

Why an external detector for long-lived particles?

• High $c\tau$

Medium center of mass

This is where exotic Higgs & B decays live! 30

 $m_{\rm LLP}$

Other models

See CODEX-b "expression of interest": 1911.00481

Tentative detector design

Resistive Plate Chamber (RPC) panels

- Relatively cheap
- Large surface area possible (e.g. ATLAS/CMS, ARGO, MATHUSLA, ...)

Fully integrated in LHCb trigger and reconstruction streams

Design drivers:

- Faces stations: recover acceptance for particles with low boost
- Inner stations: minimize distance to first tracked point

Backgrounds: hadron absorber

Neutral particles punching through the shield

Rate is small, but flux is large (!)

Neutral particles produced in the shield

Mostly from muons

Muon veto in middle of shield is critical

Backgrounds: Cavern

Soft particles swept towards detector: concrete wall is important

Important to understand detector noise and fake backgrounds

Backgrounds: Measurement campaign

Muon data taken in various places in the cavern

Good agreement with simulation and simulation is a bit conservative

B. Dey et. al. :arXiv 1912.03846

CODEX-β

Demonstrator detector

CODEX-b

Features

- Cube of resistive plate chambers (RPC's)
- Identical design to ATLAS muon chamber panels

<u>Goals</u>

- Test event reconstruction strategy
- Measure background rate

Full detector would be roughly (10 m)³

Status & outlook

- 30+ collaborators (ATLAS, CMS & LHCb)
- Completed "Expression of Interest": arXiv 1911.00481
- Demonstrator detector design completed (CODEX-β)
- Planning for Letter of Intent and technical design report

	2020	2021	2022	2023	2024	2025	2026
	LS 2		Run 3			LS 3	
$CODEX-\beta$		Production	Install	data taking	Removal		
CODEX-b						Production	Partial Install
[2027	2028	2029	2030	2031	2032	2033 →
	······	Run 4		LS 4		Run 5	
CODEX-b		Production data taking		Remaining Install		data taking	+

Collaboration

Eötvös Loránd University

35+ members & growing

For a video tour: https://www.youtube.com/watch?v=V4Y7H_H2IKM

Conclusion

The LHC is a Higgs & B factory...

... Higgs and B decays are golden opportunities for beyond the Standard Model physics

New (trigger) strategies & dedicated detectors could yield qualitatively new reach...

... but we must be bold and continue to innovate!

Thank you!

Toy detector simulation

Procedure:

- 1. Propagate track (including multiple scattering)
- 2. Find the stubs (smearing for resolution)
- 3. Fit a helix to the stubs (require at least 5 stubs)
- 4. Reconstruct a vertex

Y. Gershtein: arXiv 1705.04321

Y. Gershtein, SK: arXiv 1907.00007

Y. Gerhstein, SK, R. Redigolo: arXiv 2012.07864

Some notation

Vertex is never perfect: Δ_z measures vertex quality

Fighting fakes

Assume 30 fake tracks per event → 225 fake "vertices" per event!

Y. Gershtein, SK: arXiv 1907.00007

Background rates

Target: backgrounds ≤ 1kHz

Rates, *before* demanding matching with muon system:

minimum p_T selection	fakes (kHz)	K_S (kHz)
$(3, 3) \mathrm{GeV}$	1000	800
$(4, 4) \mathrm{GeV}$	600	240
$(5, 3) \mathrm{GeV}$	840	200

Rate in ~ 1 kHz regime if the muon fake rate \leq 5% per track (see CMS-TDR-021)

 $L_{xy} > 1.5$ cm and $d_0 > 0.1$ cm reduce true muons from B-meson decays < 1 kHz

LHCb searches

Exclusive search strategy: reconstruct the whole decay chain

$$\begin{split} B^{\pm} &\to K^{\pm} \varphi \to K^{\pm} \mu^{+} \mu^{-} & \text{arXiv:1612.07818} \\ B^{0} &\to K^{*0} \varphi \to K^{\pm} \pi^{\mp} \mu^{+} \mu^{-} & \text{arXiv:1508.04094} \end{split}$$

Reconstruct both vertices in the VELO

<u>3 lifetime bins:</u>

Prompt: $t < 1 \, \mathrm{ps}$ Displaced: $1 \, \mathrm{ps} < t < 10 \, \mathrm{ps}$ Very displaced: $10 \, \mathrm{ps} < t$

Low background, but fairly low signal efficiency

Offline analysis

Main background from B-meson decays

For example:

$$B^+ \to \mu^+ \nu_\mu D^0 X$$
$$\downarrow \mu^- \bar{\nu}_\mu K^+$$

J. Evans, A. Gandrakota, SK, H. Routray: arXiv 2008.06918

Additional cuts

Main background from B-meson decays

For example:

$$B^+ \to \mu^+ \nu_\mu D^0 X$$
$$\downarrow \mu^- \bar{\nu}_\mu K^+$$

- Background passing the L_{xy} cut is high p_{T}
- Signal tends to point back to IP

J. Evans, A. Gandrakota, SK, H. Routray: arXiv 2008.06918

Examples of things to do now

(Higgs decays)

Strongly coupled extensions of the Standard Model produce very exotic events

- Search of displaced vertices
- Machine learning techniques

Scouting: record small fraction of the event Parking: reconstruct event later

Allow to search of phenomena which would otherwise not pass the trigger thresholds

But plan must be in place before data taking!

Event display by Matt Strassler

Axion-like particle

Huge gluon luminosity at low invariant mass, we can get away with very high fa

Lifetime:

$$c\tau_a \simeq 0.2 \ \mathrm{cm} \left(\frac{f_a}{10^6 \ \mathrm{GeV}}\right)^2 \left(\frac{10 \ \mathrm{GeV}}{m_a}\right)^3$$

Y. Gerhstein, SK, R. Redigolo: arXiv 2012.07864

Axion-like particle

Efficiency:

Y. Gerhstein, SK, R. Redigolo: arXiv 2012.07864 See also: A. Hook, S. Kumar, Z. Liu, R. Sundrum: 1911.12364

Axion-like particle

Result:

Y. Gerhstein, SK, R. Redigolo: arXiv 2012.07864

Axion-like particles

Axion-like particles (ALP's):
$$\mathcal{L} \supset \frac{1}{4\Lambda} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Dominant background: light-by-light scattering!

SK, T. Lin, H. K. Lou, T. Melia: 1709.07110 SK, T. Lin, H. K. Lou, T. Melia: 1607.06083

Light-by-light scattering

Nature Physics 13 (2017) 852 ATLAS: 1904.03536 CMS: 1810.04602

CODEX-b Reach

V. Gligorov, SK, M. Papucci, D. Robinson: 1708.02243 CODEX-b expression of interest:1911.00481

Other models

See CODEX-b "expression of interest": 1911.00481

Performance

Track impact parameter in transverse plane

Vertex distance in transverse plane

Fairly good resolution on d₀, resolution on vertex location is poor as expected.

Y. Gershtein, SK: arXiv 1907.00007

Stub reconstruction efficiency

CMS phase II tracker TDR

ATLAS Muon ROI trigger

