Scalar mass stability bound in a simple Yukawa-theory from renormalisation group equations (arXiv:1508.06774)

Antal Jakovác, István Kaposvári, András Patkós

Department of Atomic Physics Eötvös University, Budapest

ACHT, 2015

Motivation

Stability Higgs bounds with perturbative RGE in SM.

$$\frac{d\lambda(Q^2)}{d\log Q^2} = \frac{1}{16\pi^2} \left(12\lambda^2 + 6\lambda h_t^2 - 3h_t^4 + \frac{3}{2}\lambda(3g_2^2 + g_1^2) + \frac{3}{16}(2g_2^4 + (g_2^2 + g_1^2)^2) \right)$$

Motivation

Non-perturbative studies in simplified models (see below):

- Lattice: Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, 2007 D.Y.-J. Chu, K. Jansen, B. Knippschild, C.-J. D. Lin and A. Nagy, 2015
 - FRG: H. Gies, C. Gneiting and R. Sondenheimer, 2014

Outline

Functional Renormalization Group Equations

Higgs-top model with discrete chiral symmetry

Functional Renormalization Group Equations of the system

The Local Potential Approximation (LPA)

Consistent solutions

Results

The Wetterich equation

Calculating the contributions to the effective action from momentum shell to momentum shell:

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \partial_t R_k \left(\Gamma_k^{(2)} + R_k \right)^{-1}$$

The regulator term suppresses p < k terms by giving them large mass. Γ_k contains the quantum fluctuations with momenta higher than k.

The Optimized Regulator used in this paper for bosons

$$R_B(p) = \left(k^2 - p^2\right) \Theta\left(\frac{k^2}{p^2} - 1\right)$$

for fermions

$$R_F(p) = \not p\left(\frac{k}{\sqrt{p^2}} - 1\right) \Theta\left(\frac{k^2}{p^2} - 1\right)$$

Effective action of the Higgs-top toy model

Classical action of a scalar-fermion Yukawa bound system:

$$S = \int d^4x \left[\frac{1}{2} (\partial_\mu \sigma)^2 + U(\rho) + \bar{\psi} \partial \!\!\!/ \psi + h \sigma \bar{\psi} \psi \right], \quad \rho = \frac{1}{2} \sigma^2, \quad I = \sigma \bar{\psi} \psi$$

 ρ and I are invariant under the discrete chiral symmetry:

$$\sigma(x) \to -\sigma(x), \qquad \psi(x) \to \gamma_5 \psi(x), \qquad \bar{\psi}(x) \to -\bar{\psi}(x)\gamma_5$$

Scale-dependent effective-action for $k < \Lambda$:

$$\Gamma_k = \int \mathrm{d}^4 x \left[\frac{Z_{\sigma,k}}{2} (\partial_\mu \sigma)^2 + U_k(\rho) + Z_{\psi,k} \bar{\psi} \partial \!\!\!/ \psi + h_k \sigma \bar{\psi} \psi \right], \quad \rho = \frac{Z_{\sigma,k}}{2} \sigma^2$$

Infrared observables (obtained by fine-tuning the initial conditions):

$$v = Z_{\sigma 0}^{1/2} \sigma_0 = 246 GeV, \qquad m_{\psi} = h_0 \sigma_0 = 173 GeV$$
$$m_{\sigma}^2 = U_0'(\rho_0) + 2\rho_0 U_0''(\rho_0)$$

The Wetterich equation

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \partial_t R_k \left(\Gamma_k^{(2)} + R_k \right)^{-1} = \frac{1}{2} \hat{\partial}_t \operatorname{STr} \log(\Gamma_k^{(2)} + R_k)$$

The right hand side of the Wetterich equation:

$$\frac{1}{2} \operatorname{STr} \log(\Gamma_k^{(2)} + R_k) = -\frac{1}{2} \operatorname{Tr} \log(\Gamma_{\Psi^T \Psi}^{(2)} + R_k^F) + \frac{1}{2} \operatorname{Tr} \log(\Gamma_{\sigma\sigma}^{(2)} + R_k^B) + \frac{1}{2} \operatorname{Tr} \log\left[1 - \left(\Gamma_{\sigma\sigma}^{(2)} + R_k^B\right)^{-1} \Gamma_{\sigma\Psi}^{(2)} \left(\Gamma_{\Psi^T \Psi}^{(2)} + R_k^F\right)^{-1} \Gamma_{\Psi^T \sigma}^{(2)}\right]$$

The Local Potential Approximation (LPA)

Constant background values, no field renormalization:

$$\sigma(x) \to v_k, \quad \psi(x) \to \psi_k, \quad \bar{\psi}(x) \to \bar{\psi}_k, \quad Z_{\sigma,k} \to 1, \quad Z_{\psi,k} \to 1$$

$$\partial_k [U_k(\rho_k) + h_k I_k] = \frac{1}{2} \hat{\partial}_k \int_q \left[-4 \log(q_R^2 + m_\psi^2) + \log(q_R^2 + m_\sigma^2) + \log\left\{ 1 - h_k^2 \frac{1}{q_R^2 + m_\sigma^2} \frac{2h_k I_k}{q_R^2 + m_\psi^2} \right\} \right].$$

$$m_{\sigma}^2 = U'_k(\rho_k) + 2\rho_k U''_k(\rho_k), \qquad m_{\psi}^2 = 2h_k^2 \rho_k$$

At a given scale ρ_k and I_k are connected by the equation of motion of the scalar field:

$$\sigma \frac{\delta \Gamma_k}{\delta \sigma} \Big|_{\sigma = v_k, \psi = \psi_k} = h_k I_k + 2\rho_k U'_k(\rho_k) = 0.$$

うくつ

Consistent solutions

The consistency of the two sides of the LPA equation can be ensured in different ways.

Version A: Complete elimination of I_k on RHS

$$\partial_k h_t = 0,$$

$$\partial_t U_k(\rho_k) = \frac{1}{2} \hat{\partial}_t \int_q \left\{ -5 \log(q_R^2 + m_{\psi}^2) + \log\left[(q_R^2 + m_{\sigma}^2)(q_R^2 + m_{\psi}^2) + 4h_k^2 \rho_k U'(\rho_k) \right] \right\}$$

After rewriting the equation using dimensonless variables and perform the $\hat{\partial}_t$ operation on RHS:

$$\partial_t u_r = (d-2)\rho_r u'_r - du_r + + v_d \left(-\frac{5}{1+\mu_{\psi}^2} + \frac{2+\mu_{\psi}^2+\mu_{\sigma}^2}{(1+\mu_{\psi}^2)(1+\mu_{\sigma}^2)+4h_r^2\rho_r u'_r} \right)$$

Consistent solutions

Version B: Linearization of RHS in I_k

$$\begin{split} \partial_t(h_k I_k) &= -\frac{1}{2} \hat{\partial}_t \int_q \frac{2h_k^3 I_k}{(q_R^2 + m_\psi^2)(q_R^2 + m_\sigma^2)},\\ \partial_t U_k(\rho_k) &= \frac{1}{2} \hat{\partial}_t \int_q \left[-4\log(q_R^2 + m_\psi^2) + \log(q_R^2 + m_\sigma^2) + \log\left\{ 1 + h_k^2 \frac{1}{q_R^2 + m_\sigma^2} \frac{4\rho_k U_k'(\rho_k)}{q_R^2 + m_\psi^2} \right\} \right] \\ &\quad + \log\left\{ 1 + h_k^2 \frac{1}{q_R^2 + m_\sigma^2} \frac{4\rho_k U_k'(\rho_k)}{q_R^2 + m_\psi^2} \right\} \right] \\ &\quad - \frac{1}{2} \hat{\partial}_t \int_q \frac{4h_k^2 \rho_k U_k'(\rho_k)}{(q_R^2 + m_\psi^2)(q_R^2 + m_\sigma^2)}. \end{split}$$

Gies et al. (2014): no ψ background, last two terms missing.

The potential used in the study for the symmetric (SYM) and symmetry broken (SB) regime respectively:

$$U_{k}^{(\text{SYM})}(\rho_{k}) = \sum_{n=1}^{N_{p}} \frac{\lambda_{n} \rho_{k}^{n}}{n!}, \qquad U_{k}^{(\text{SB})}(\rho_{k}) = \sum_{n=2}^{N_{p}} \frac{\lambda_{n} (\rho_{k} - \kappa_{k})^{n}}{n!}$$

Results for $\lambda_2 = 0.001, 1, 10, 50, 100$ from bottom to top respectively:

The potential used in the study for the symmetric (SYM) and symmetry broken (SB) regime respectively:

$$U_{k}^{(\text{SYM})}(\rho_{k}) = \sum_{n=1}^{N_{p}} \frac{\lambda_{n} \rho_{k}^{n}}{n!}, \qquad U_{k}^{(\text{SB})}(\rho_{k}) = \sum_{n=2}^{N_{p}} \frac{\lambda_{n} (\rho_{k} - \kappa_{k})^{n}}{n!}$$

Higgs mass stability and triviality bounds for $N_p = 2$:

 $\begin{array}{l} \mbox{Including } Z_{\psi}, \, Z_{\sigma} \neq 1 \mbox{ leads to a percent level changes.} \\ \mbox{The maximum allowed value of the cutoff} \\ N_p = 2: \qquad 2.9 \times 10^6 \mbox{GeV} < \Lambda^{(2)}_{max} < 3.7 \times 10^6 \mbox{GeV} \end{array}$

Lower bound with quadratic and quartic truncations of $U_k(\rho_k)$ using Version A:

The maximum allowed value of the cutoff

 $N_p = 2$: $2.9 \times 10^6 \text{GeV} < \Lambda_{max}^{(2)} < 3.7 \times 10^6 \text{GeV}$

$$N_p = 4$$
: $3.7 \times 10^6 \text{GeV} < \Lambda_{max}^{(4)} < 5.3 \times 10^6 \text{GeV}$

Summary

- The allowed range of the Higgs mass has been determined with FRG in presence of a pointlike composite fermion background.
- \succ Close agreement of all approximation signals a robust determination of Λ_{max}

Outlook

- ${\bf \triangleright}$ Investigation of a more general ansatz for Γ_k with the effects of heavy neutrinos of the seesaw mechanism
- Inclusion of the multiplet structure and the gauge interactions of the SM