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Hubbard model

Model of high-T superconductivity and Mott transitions was proposed by J. Hubbard (also
M. Gutzwiller and J. Kanamori) in 1963.

H = −t
L∑

j=−L
α=↑,↓

(ψ†jαψj+1α + ψ†j+1αψjα)− hN + 2BSz + U
L∑

j=−L
nj↑nj↓

where ψj ,α are either bosons either fermions (we consider the latter case)

ψjαψ
†
j ′α′ + ψ†j ′α′ψjα = δjj ′δαα′ nj = nj↑ + nj↓

Sz is a total magnetization, B – magnetic field, N – particles number and h is a chemical
potential
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Tight-binding approximation

• Each site corresponds to the ion

• Particles are valence electrons

• Hopping parameter t is a probability of tunneling between sites

• U is the on-site Coulomb repulsion

• Intersite interaction: neglected! (see, however, extended Hubbard)

Each site contains one of the possibilities (Pauli principle!)

|0〉, |↑〉, |↓〉, |↑↓〉

• Bonus: AdS/CFT
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Model was extensively studied extensively (the list is to long to be given here even partially)

• A. Altland, B. Simons, “Interaction effects in the tight-binding system”

• F. H. L. Essler et. al., “The one-dimensional Hubbard model”

• D. Baeriswyl et. al., “The Hubbard Model”

• A. Montorsi, “The Hubbard Model” (Collection of reprints)

• Shastry, Omedilla, Wadati, ... (integrability)

• de Leeuw, Beisert, Frolov (AdS/CFT)
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Exact solution

For simplicity 1D version of model is widely studied (and periodicity is assumed). It was
discovered by Lieb and Wu that model could be solved explicitly in 1D. Exact many-particle
eigenfunctions and spectrum of the system were found

• The exact microscopical solution is given in terms of particles of two types

• The first type is describing motion of N electrons in the system of size L

• The second type describes the motion of M spin waves in the system of size N

• Obviously, these two degrees of freedom are not independent
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Bethe vectors

Eigenvectors are traditionally called Bethe vectors and they are nothing but linear
combinations of plane waves (2 types of plane waves in our case) with coefficients fixed from
the Hamiltonian

|ψ〉 =
1

N!

L∑
x1,...,xN=1

∑
a1,...,aN=↑,↓

ψ(x; a|k,λ)|x, a〉

where |x; a〈 are Fock space vectors and

ψ(x; a|k,λ) =
∑
P∈ΣN

∑
Q∈ΣM

sign(PQ)FPQ(k,λ)e i(
∑N

j kjxPj+
∑M

k λkaQk)
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Bethe ansatz solution

In a periodic system of size L momentums of particles are given by Bethe equation

e ikjL =
M∏
`=1

S1(λ`, sin kj), j = 1, . . . ,N

N∏
j=1

S1(λ`, sin kj) =
M∏

m 6=`
S2(λ`, λm), ` = 1, . . . ,M

Where scattering matrix elements between are given by

S1(x , y) =
x − y − iU/t

x − y + iU/t
, S2(x , y) =

x − y − 2iU/t

x − y + 2iU/t
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Correlation functions and observables

Green-Kubo theorem

In the linear response approximation kinetic coefficients {σ} can be calculated via the
correlataion functions

σ(q, ω) ∼
∫ ∞

0
dt e iωt

〈[
J†(q, t), J(q, 0)

]〉
β

where {ω, q} are the frequency and the momenta and [· , · ] is a commutator

The problem is reduced to the computation of correlation functions

〈J†(x , t)J(0, 0)〉β =
∑
n

e−βEn〈n|J†(x , t)J(0, 0)|n〉
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Large coupling limit

In large coupling limit U →∞ states with double occupancies are effectively prohibited since
they possess infinity energy. Only possibilities |0〉, |↑〉, |↓〉 are allowed in each site
Under this condition we are dealing with effectively free model
The simplest evidence are equation of spectrum

e ikaL =e i(M+1)M , a = 1, . . .N

e iλbN =(−1)M+1, b = 1, . . .M.
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Spin-charge separation

Spin-charge basis

In the new basis of spinless fermions cj where charge and spin degrees of freedom are
“separated”

|f 〉 = c†j1 . . . c
†
jN
|0〉, |`〉 = |α1, . . . , αN〉

The total wavefunction is given by

|j,α〉 = |f 〉 ⊗f |`〉, j1 < j2 < · · · < jN .

The subscript f in ⊗f indicates a constraint in the tensor product ⊗:
the number of spinless fermions N in the charge part |f 〉, determines the number of sites of
the spin chain in the spin part |`〉.
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Spinless fermions

In a basis of free fermioins we arrive to free Hamiltonian

H = −
∞∑

j=−∞
(c†j cj+1 + c†j+1cj)− hN + 2BSz

Within spin-charge separation computation of correlation functions simplifies

〈· · · 〉T =
1

Z

∞∑
N=0

∑
f ,`

(
〈`| ⊗f 〈f |

)
e−βH · · ·

(
|f 〉 ⊗f |`〉

)

Remark: physical operators should be translated to the new basis too
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One point correlation function example

Local magnetization sz(j , t) can be expressed via 1-point correlation of free spinless fermions
with a shifted energy

E −→ Ẽ = E − Nh − Nβ−1 log[2 cosh(βB)]

Artifact, the system remembers about the spin! Then

〈sz(j , t)〉T = − tanh(βB)

2

∑∞
N=0

∑
k e
−βẼk〈k|nj |k〉∑∞

N=0

∑
k e
−βẼk

Farther computation is done like in free spinless fermions
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Magnetization

In thermodynamic limit L→∞, N →∞, M →∞, L/N = Density , M/L = Magnetization

〈sz(x , t)〉T = 〈sz(0, 0)〉T = − tanh(βB)

2

π∫
−π

dk

2π
ρ(k),

where ρ(k) is a Fermi-Dirac distribution with the modified energies

ρ(k) =
1

eβε̃(k) + 1
=

2 cosh(βB)

2 cosh(βB) + eβ[ε(k)−h]
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Two-point correlation functions

Spin densities correlator in the thermodynamic limit is given by

〈sz(x , t)sz(0, 0)〉β = σ0(x , t) + σ1(x , t)

σ1(x , t) ∼
π∫
−π

dλ

2π

ŜFλ(x , t)

1− cosλ
, σ0(x , t) ∼ tanh2(βB)

ŜFλ(x , t)

1− cosλ

∣∣∣
λ=0

Ŝ f (x) = 2f (x)− f (x + 1)− f (x − 1) is a discrete analog of the second derivative

Fλ is a Fredholm determinant with a modified sine-kernel (old result for free fermions!)
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Correlation function via generalized hydrodynamics

∂tQ`(x , t) + ∂xJ`(x , t) = 0, ` = 1, 2, . . .

Drude weight D and Onsager matrix L are defined as (sub)leading terms

D = lim
τ→∞

1

2τ

∫ τ

−τ
ds

∫
〈J(x , s)J(0, 0)〉β L = lim

τ→∞

1

2τ

∫ τ

−τ
ds

∫ (
〈J(x , s)J(0, 0)〉β − D

)
On the other hand D, L can be expressed via charges correlator σ = 〈q(x , t)q(0, 0)〉β
(J. De Nardis et. al. (2020), also H. Spohn, B. Doyon)

1

2

∑
x

x2 (σ(x , t) + σ(x ,−t)) = Dt2 + Lt + o(1)
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Drude weight

D =
tanh2(βB)

4

π∫
−π

dk

2π
ε′(k)2ρ(k)(1− ρ(k))

From GHD prediction: E. Ilievski, J. De Nardis (2017), J. De Nardis et. al. (2020)

DGHD =

∫
dkρ(k)(1− ρ(k))(v eff(k))2(mdr(k))2

here dressed velocity v eff , magnetization mdr, root density n(k) and particles distribution ρp
should be computed via microscopic approach. We see the following identification

v eff(k)↔ ε′(k) mdr(k)↔ − tanh(βB)/2
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Diffusion vs ballistic

At B = 0 −→ D = 0 and the system switches to the diffusive behavior

From the long range analysis x →∞, t →∞, x ∼
√
t diffusion constant could be fixed

〈sz(x , t)sz(0, 0)〉β ∼
∫

dq

2π
ρ(q)

e−x
2/(2Dt)

√
2πDt

+ Ballistic part

D = 〈sz〉−2

π∫
−π

|ε′(q)|ρ(q)(1− ρ(q))
dq

2π

At T →∞ result for D coincides with the semi-classical prediction J. Feldmeier et. al. (2022)
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Figure: Diffusive part of the spin-spin correlation function. Solid lines show analytic answer of
asymptotic analysis and dots correspond to numeric evaluation of correlators (Fredholm determinants
discretization) with parameter h = 2, B = 1, T = 2.
Inset shows the diffusion constant D after numerical fitting of correlators B = 0, h = 2 and
temperatures according to the legend. Dashed lines show analytic answer
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Diffusive behavior

Again, use σ = 〈q(x , t)q(0, 0)〉β and

1

2

∑
x

x2 (σ(x , t) + σ(x ,−t)) = Dt2 + Lt + o(1)

The diffusion constant could be computed as

D = L/〈sz〉

(J. De Nardis et. al. (2020), also H. Spohn, B. Doyon). It coincides with D only if the ballistic
part is absent (i.e. for B = 0) when the Drude weight disappears.
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Diffusion

GHD prediction of diffusion coefficient

DGHD =

∫
dk ρp(k)(1− n(k))|v eff(k)|

∂2
B(mdr(k))2

16〈sz〉2
∣∣∣
B=0

,

coincides with our prediction

D = 〈sz〉−2

π∫
−π

|ε′(q)|ρ(q)(1− ρ(q))
dq

2π

after the proper identification

v eff(k)↔ ε′(k) mdr(k)↔ − tanh(βB)/2
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Conclusions

• Correlators in the dynamical case from exact microscopic approach

• Finite temperature correlators

• More complicated correlators?

• Relaxation dynamics?

• Finite coupling constant?

• Extended Hubbard model(s)?
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Perspectives: “real” Hubbard?

• Model takes into account intersite interaction
• Model is integrable only in some particular cases
• Bariev, Alcaraz, Schaschneider, Essler, Korepin, Montorsi,...

H = −
L∑

j=1

∑
σ=↑,↓

[
t − X (nj ,σ + nj+1,−σ) + X̃ nj ,σnj+1,−σ

] (
c†j ,σcj+1,σ + h.c .

)
+ U

L∑
j=1

nj ,↑nj ,↓

+
V

2

L∑
j=1

njnj+1 +
W

2

∑
σ,σ′=↑,↓

c†j ,σc
†
j+1,σ′cj ,σ′cj+1,σ + Y c†j ,↑c

†
j ,↓cj+1,↓cj+1,↑ + Pnj ,↑nj ,↓nj+1

+
Q

2

L∑
j=1

nj ,↑nj ,↓nj+1,↑nj+1,↓ + µe
∑
j ,σ

nj ,σ
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