LeClair-Mussardo theorem and correlation functions in integrable

 systemsA. Hutsalyuk, B. Pozsgay, L. Pristyák

November 18, 2020

Green-Kubo theorem: in the linear response approximation kinetic coefficients $\{\sigma\}$ can be calculated via the correlataion functions

$$
\sigma(q, \omega)=\frac{1}{\omega V} \int_{0}^{\infty} d t e^{i \omega t}\left\langle\left[J^{\dagger}(q, t), J(q, 0)\right]\right\rangle+i \frac{n e^{2}}{\omega}
$$

The problem is reduced to the computation of correlation functions

$$
\left\langle J^{\dagger}(x, t) J(0,0)\right\rangle_{\beta}=\sum_{n} e^{-\beta E_{n}}\left\langle\psi_{n}\right| J^{\dagger}(x, t) J(0,0)\left|\psi_{n}\right\rangle
$$

Where denotes $\left|\psi_{n}\right\rangle$ secondary quantized n-particles wave functions. If $|\psi\rangle$ are known (usually they are not) correlators, in principle, can be computed using the normal ordering procedure.
However...

- High energy physics. Typical situation is a colliding experiment: pairwise scattering of two free (at large distance) particles, interaction only the short range. Convenient method: switching to the interaction representation, expansion in the series using Feynman diagram technique
- Condensed matter physics. Many particles problem. Convenient method: effectively restriction to a few-particles problem, the rest particles are the background and are described by the additional effective fields or neglected. Example: superconductivity, thus, electrons are organized in the Cooper pairs, interaction with other electrons is neglected, interaction with ions are described by the phonon field
- The exact computation of observables between eigenvectors that contain large number of (quasi)particles is extremely complicated problem even in case of the simplest, for instance δ-like potential. Moreover the exact wave functions are usually unknown. In condensed matter physics typical number of particles is $10^{6}-10^{10}$

Eigenvectors

There exist 1D systems that can be solved using Bethe ansatz (1931), H. Bethe. The k-particles secondary quantazied functions (also called Bethe vectors) can be presented as

$$
\left|\psi\left(u_{1}, \ldots, u_{n}\right)\right\rangle=\int d \bar{x} \chi(\bar{u} \mid \bar{x}) \psi^{\dagger}\left(x_{1}\right) \ldots \psi^{\dagger}\left(x_{n}\right)|0\rangle
$$

$\bar{u}=\left\{u_{1}, \ldots, u_{n}\right\}, \bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ with the following restrictions in the periodical case (considered for simplicity)

- Wave function should satisfy following properties

$$
\begin{aligned}
& \chi\left(\bar{x} \mid u_{1} \ldots, u_{j} \ldots u_{k} \ldots\right)=-\chi\left(\bar{x} \mid u_{1} \ldots, u_{k} \ldots u_{j} \ldots\right), \quad j \neq k, \quad j, k=1, \ldots, n, \\
& \chi\left(x_{1} \ldots, x_{j}+L \ldots \mid \bar{u}\right)=\chi\left(x_{1} \ldots, x_{j} \ldots \mid \bar{u}\right), \quad j=1, \ldots, n .
\end{aligned}
$$

- We do not clarify Hamiltonian explicitly, but suggest that there exist factorization properties of scattering

Using the antisymmetric condition and factorization property we can write $\chi_{\bar{\alpha}}(\bar{z} \mid \bar{u})$ as

$$
\chi(\bar{z} \mid \bar{u})=\sum_{\tau \in S_{a}} A\left(u_{\tau_{1}}, \ldots, u_{\tau_{a}}\right) \prod_{k=1}^{a} \tilde{\chi}\left(u_{\tau_{k}} \mid x_{\sigma_{k}}\right), \quad x_{\sigma_{1}}<\cdots<x_{\sigma_{k}}
$$

where $\tilde{\chi}(u \mid x)=\tilde{\chi}(u) e^{i p(u) x}$ are one particle functions (plain waves) with a momentum p and coefficients $A\left(u_{1} \ldots u_{n}\right)$ satisfy

$$
\frac{A\left(\ldots, u_{j} \ldots u_{k} \ldots\right)}{A\left(\ldots, u_{k} \ldots u_{j} \ldots\right)}=S\left(u_{j}, u_{k}\right), \quad j \neq k, \quad j, k=1, \ldots, n
$$

S is an exponent of the two-particle scattering phase: $S(w, u)=\exp (i \Phi(w, u))$. Using the property of periodicity we fix the following condition called Bethe equation

$$
e^{-i p\left(u_{j}\right) L} \prod_{s \neq j}^{a} S\left(u_{j}, u_{s}\right)=1, \quad j=1, \ldots, a
$$

- Bethe vectors become the eigenvectors if the set of rapidities $\{\bar{u}\}$ (known also as Bethe or spectral parameters) satisfies the system of Bethe equation. Such Bethe vectors are called on-shell. Otherwise Bethe vectors are called off-shell or generic. Note: Bethe equation system and Bethe ansatz in general are more complicated the (quasi)particles have internal degrees of freedom, for instance spin, different type of particles, etc.
- Using the commutation relation commutation relations for fields $\left\{\psi_{\alpha}^{\dagger}(x), \psi_{\beta}(y)\right\}=\delta_{\alpha, \beta} \delta(x-y)$ correlation functions can be calculated - The final expression is quite bulky combinatorial expression on the spectral parameters $\{u\}$. The computatiotn pf the themodynamic limit, i.e. particles number $a \rightarrow \infty$, system size $L \rightarrow \infty$ such that $a / L=\rho$ (where ρ is density) is obviously not an easy task
- There exist multiple approaches to calculate the thermodynamic limit.

Norm of the eigenvector

$$
\left\langle\psi_{n} \mid \psi_{n}\right\rangle=\prod_{j>k} \frac{\left(u_{j}-u_{k}\right)^{2}+c^{2}}{\left(u_{j}-u_{k}\right)^{2}} \operatorname{det} G(\bar{u})
$$

$G_{j k}$ is a Jacobian of Bethe equations

$$
G_{j k}(\bar{u})=\frac{\partial}{\partial u_{j}}\left[e^{i p\left(u_{k}\right)} \prod_{\ell} S^{-1}\left(u_{k}, u_{\ell}\right)\right] .
$$

We define also $G\left(\bar{u}_{\mathrm{I}} \mid \bar{u}\right)$, where $G_{j k}\left(\bar{u}_{\mathrm{I}} \mid \bar{u}\right)$ denote a sub-block of matrix $G_{j k}(\bar{u})$ of size $m=\# \bar{u}_{\mathrm{I}}$, which is build from the columns and rows numerated by $u_{j}, u_{k} \in \bar{u}_{\mathrm{I}}$

Connected form factors

Consider a finite part of operator $O(x, y)=J^{\dagger}(x) J(y)$ between the on-shell Bethe vectors (eigenvectors)

$$
\mathfrak{F}_{m}^{c}(\bar{u})=\text { Fin } \lim _{\varepsilon_{i} \rightarrow 0}\langle\bar{u}+\bar{\varepsilon}| O(x, y)|\bar{u}\rangle, \quad u_{1} \rightarrow u_{1}+\varepsilon_{1}, u_{2} \rightarrow u_{2}+\varepsilon_{2}, \ldots
$$

Important on-shell condition applied before the limit. Define finite part

$$
\text { Fin } X: \quad \text { part of }(X) \sim \varepsilon_{j} / \varepsilon_{k}=0, \quad j \neq k
$$

Finite size LeClair-Mussardo expansion

$$
\langle O(x, y)\rangle_{a}(\bar{u})=\frac{\sum \mathfrak{F}_{a-m}^{c}\left(\bar{u}_{\text {II }}\right) \operatorname{det} G\left(\bar{u}_{\mathrm{I}} \mid \bar{u}\right)}{\operatorname{det} G(\bar{u})}
$$

The sum is taken over all possible partitions $\bar{u} \rightarrow\left\{\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right\}$ including cases $\bar{u}_{\mathrm{I}}=\varnothing$, $\bar{u}_{\mathrm{I}}=\varnothing$. Cardinalities are denoted as $\# \bar{u}_{\mathrm{I}}=m, \# \bar{u}_{\mathrm{II}}=a-m$.

Thermodynamic limit of expansion

A. Leclair, G. Mussardo, Nucl. Phys. B 552 (1999), 624-642.
B. Pozsgay, G. Takacs, Nucl. Phys. B 788 (2008), 209-251.

The ratio of determinants

$$
\frac{\operatorname{det} G\left(\bar{u}_{\mathrm{I}} \mid \bar{u}\right)}{\operatorname{det} G(\bar{u})}=\prod_{u_{j} \in \bar{u}_{\mathrm{I}}} \rho\left(u_{j}\right),
$$

ρ is the density function. The thermodynamic limit of the LM expansion

$$
\langle O(x, y)\rangle=\sum_{n=0}^{\infty} \frac{1}{n!} \prod_{j=1}^{n} \int \frac{d t_{j}}{(2 \pi)} \mathfrak{F}_{n}^{c}(\bar{t}),
$$

the integral is taking over the Fermi zone.

- How to compute \mathfrak{F}_{n}^{c} ?
- Whether the series is converge fast enough?

Symmetric form factor expansion

Define a symmetric limit of operator $O(x, y)$ between the on-shell Bethe vectors (eigenvectors). Important: on-shell condition is applied before the limit.

$$
\mathfrak{F}_{m}(\bar{u})=\lim _{\varepsilon \rightarrow 0}\langle\bar{u}+\varepsilon| O(x, y)|\bar{u}\rangle, \quad O(x, y)=J^{\dagger}(x) J(y),
$$

i. e. on-shell condition is applied fist for left and right vectors and then the limit of the left state to the right is taken. The finite size expansion is given by

$$
\langle O(x, y)\rangle_{a}(\bar{u})=\frac{\sum \mathfrak{F}_{a-m}\left(\bar{u}_{\mathrm{I}}\right) \operatorname{det} G\left(\bar{u}_{\mathrm{I}}\right)}{\operatorname{det} G(\bar{u})}
$$

The sum is taken over all possible partitions $\bar{u} \rightarrow\left\{\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right\}$ including cases $\bar{u}_{\mathrm{I}}=\varnothing$, $\bar{u}_{\mathrm{II}}=\varnothing$. Cardinalities are denoted as $\# \bar{u}_{\mathrm{I}}=m, \# \bar{u}_{\mathrm{II}}=a-m$.
B. Pozsgay, J. Stat. Mech. (2011), P01011,
B. Pozsgay, G. Takacs, J. Stat. Mech. 11 (2010), 12.

Thermodynamic limit

The limit of two Gaudin determinants is given by

$$
\frac{\operatorname{det} G\left(\bar{u}_{\mathrm{I}}\right)}{\operatorname{det} G(\bar{u})}=\prod_{u_{j} \in \bar{u}_{\mathrm{I}}} \omega\left(u_{j}\right) \rho\left(u_{j}\right), \quad \omega(u)=\exp \left(-\frac{1}{2 \pi} \int_{-Q}^{Q} d v K(v, u)\right),
$$

$K(x, y)=\partial_{x} S(x, y), \bar{u}=\left\{\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right\}, \pm Q$ are Fermi boundaries, ρ is a density function of Bethe parameters. Hereby the thermodynamic limit of LM expansion can be derived

$$
\langle O(x, y)\rangle=\sum_{n=0}^{\infty} \frac{1}{n!} \prod_{j=1}^{n} \int \frac{d t_{j}}{(2 \pi)} \omega\left(t_{j}\right) \mathfrak{F}_{n}(\bar{t})
$$

The similar expansion for Bose gas was made by
D. B. Creamer, H. B. Thacker, D. Wilkinson, Phys. Rev. D 23 (1981)

- How to compute \mathfrak{F}_{n} ?
- Whether the series is converge fast enough?

Irreducible parts

Consider the limit with fixed momenta $p(u)$. Important: on-shell condition is applied before the limit.

$$
I_{a}(\bar{u})=\left.\lim _{\varepsilon \rightarrow 0}\langle\bar{u}+\varepsilon| O(x, y)|\bar{u}\rangle\right|_{e^{i\left(\left(u_{j}\right) x\right.}=\text { const. }}
$$

Expand I_{a} in the Fourier series \mathcal{A}_{n}

$$
I_{a}(\bar{u})=\sum\left(\prod_{j=1}^{m} e^{i\left(p\left(u_{j}^{-}\right)-i p\left(u_{j}^{+}\right)\right) x}-1\right) \mathcal{A}_{n}\left(\bar{u}^{+} ; \bar{u}^{-} ; \bar{u}^{0}\right) .
$$

where p is momenta, the sum is taken over all possible partitions $\bar{u} \rightarrow\left\{\bar{u}^{+}, \bar{u}^{-}, \bar{u}^{0}\right\}$, $n=\# \bar{u}+=\# \bar{u}^{-}$including cases $\bar{u}^{+}=\bar{u}^{-}=\varnothing$ or $\bar{u}^{0}=\varnothing$

Irreducible parts expansion

The following expansion can be established

$$
\begin{gathered}
\left\langle J_{\alpha}(x) J_{\beta}(0)\right\rangle=\left\langle J_{\alpha}\right\rangle\left\langle J_{\beta}\right\rangle+\sum_{k=2}^{\infty} \Gamma_{k} . \\
\Gamma_{k}=\frac{1}{k!} \prod_{j=1}^{k} \int \frac{d t_{j}}{(2 \pi)} \omega\left(t_{j}\right) \sum \mathcal{A}_{k}\left(\bar{t}^{+} ; \bar{t}^{-} ; \bar{t}^{0}\right) \exp \left(i x p_{n}\left(\bar{t}^{+} ; \bar{t}^{-}\right)\right)
\end{gathered}
$$

the sum is taken over all possible partitions of $\bar{t} \rightarrow\left\{\bar{t}^{+}, \bar{t}^{-}, \bar{t}^{0}\right\}$ including cases where $\bar{t}^{+}=\bar{t}^{-}=\varnothing$ or $\bar{t}^{0}=\varnothing . P_{n}\left(\bar{t}^{+}, \bar{t}^{-}\right)$is a renormalised momentum

$$
1+P_{n}\left(s \mid \bar{u}^{+} ; \bar{u}^{-}\right)=\prod_{j \in \bar{u}^{+}} \frac{f\left(u_{j}, s\right)}{f\left(s, u_{j}\right)} \prod_{k \in \bar{u}^{-}} \frac{f\left(s, u_{k}\right)}{f\left(u_{k}, s\right)} \exp \left(\int_{-Q}^{Q} K(p, s) P_{n}\left(s \mid \bar{u}^{+} ; \bar{u}^{-}\right) d s\right)
$$

Note: here only Fourier coefficients depend on particular operators J_{α}.

Physical system examples

Lieb-Liniger model (1D bose gas), E. H. Lieb, W. Liniger, Phys. Rev. 130 (1963)

$$
\mathcal{H}=\int_{0}^{L} d x\left\{-\psi^{\dagger}(x) \partial_{x}^{2} \psi(x)+\varkappa\left(\psi(x)^{\dagger} \psi(x)\right)^{2}\right\}
$$

Spin-1/2 1D Fermi gas, C. N. Yang, Phys. Rev. Lett. 19 (1967)

$$
\left.\left.\begin{array}{c}
\mathcal{H}=\int_{0}^{L} d x\left\{\partial \psi_{\alpha}^{\dagger} \partial \psi_{\alpha}+\varkappa \psi_{\alpha}^{\dagger} \psi_{\beta}^{\dagger} \psi_{\beta} \psi_{\alpha}\right\}, \quad \alpha, \beta=\uparrow, \downarrow \\
\end{array}\right\} \psi_{\alpha}^{\dagger}(x), \psi_{\beta}(y)\right\}=\delta_{\alpha \beta} \delta(x-y) .
$$

Y.-K. Zhou, B.-H. Zhao, Phys. Lett. A. 123 (1987).
V. E. Korepin, Comm. Math. Phys. 94 (1984), 93.

$$
\begin{aligned}
& \langle n(x) n(0)\rangle=\frac{Q^{2}}{\pi^{2}}+\frac{4 Q^{2}}{c \pi^{3}}+\left(1+\frac{2}{c} \frac{\partial}{\partial x_{r}}\right) \frac{\sin ^{2}\left(Q x_{r}\right)}{2 \pi^{2} x_{r}^{2}}-\frac{4 Q}{\pi c} \frac{\sin ^{2}\left(Q x_{r}\right)}{2 \pi^{2} x_{r}^{2}} \\
& \quad+\frac{1}{c} \frac{4 Q}{(2 \pi)^{3}} \frac{\sin ^{2}(Q x)}{x^{2}}+\frac{2}{c} \frac{\partial}{\partial x} \sin (Q x) \int_{-Q}^{Q} \frac{d u}{(2 \pi)^{3}} \sin (u x) \ln \left(\frac{Q+u}{Q-u}\right)
\end{aligned}
$$

Q is a Fermi boundary for the Bose gas, $x_{r}=x(1+2 Q /(\pi c))$.
In the same way it is easy to derive correlators in Fermi gas, where $n_{\uparrow \downarrow}$ are densities with the correspondent spin projections, $n=n_{\uparrow}+n_{\downarrow}$

$$
\begin{gathered}
\langle n(x) n(0)\rangle=\left(\frac{Q^{2}}{\pi^{2}}-\frac{\sin ^{2}(Q x)}{x^{2} \pi^{2}}\right)+O\left(1 / c^{2}\right) . \\
\left\langle n_{\uparrow}(x) n_{\downarrow}(0)\right\rangle=\frac{4 Q^{2} B}{\pi^{3} c}-\frac{4 B \sin ^{2}(Q x)}{\pi^{3} x^{2} c}+O\left(1 / c^{2}\right) .
\end{gathered}
$$

Q is a Fermi boundary for the Fermi gas and $B=n_{\uparrow} \pi^{2} c /(4 Q)$

Algebraic Bethe ansatz (ABA)

The approach to integrability can be reformulated via the following axioms

- R-matrix satisfies Yang-Baxter equation

$$
R_{12}(u-v) R_{13}(u) R_{23}(v)=R_{23}(v) R_{13}(u) R_{12}(u-v) .
$$

Equation holds in a tensor product of spaces $\mathbb{C}^{\otimes 3}$. Subscripts denote the number of space in which $R_{j k}$ acts nontrivially.

- The system is provided by the Lax operator $L(v)$ that depends on spectral parameters λ, μ and satisfies $R L L$-relation

$$
R_{12}(u-v) L_{13}(u) L_{23}(v)=L_{23}(v) L_{13}(u) R_{12}(u-v)
$$

Equation holds in a tensor product of spaces $\mathbb{C} \otimes \mathbb{C} \otimes \mathcal{H}, \mathcal{H}$ is a Hilbert space of the one-site Hamiltonian, \mathbb{C} is called an auxiliary space. Subscripts denote the numbers of spaces in which $R_{j k}$ acts nontrivially.

- Monodromy matrix (the name is taken from the classical integrability) is expressed via the Lax matrix as

$$
T(u)=L_{N}(u) \cdots L_{1}(u)
$$

- All the information about the system is included in the monodromy matrix. Thus, physical operators can be expressed via the monodromy matrix entries
- Trace of T matrix is called transfer matrix. $t(u)$ is the generation function the pairwise commuting integrals of motion $\left\{Q_{k}\right\}$ (natural extension of the classical definition of integrability). Take the trace over the auxiliary space

$$
\operatorname{tr}_{0} T_{01}(u)=\sum_{k} Q_{k}\left(u-u_{0}\right)^{k}
$$

Hamiltonian included in this scheme, for example in considered cases as Q_{2}

Physical system examples

- Discrete version of 1D Bose gas with nonlinear interaction and lattice spacing Δ and lattice defined fields $\psi_{n}, \psi_{n}^{\dagger}$

$$
L_{n}(u)=\frac{1}{1-\frac{\mathfrak{i} u \Delta}{2}}\left(\begin{array}{cc}
1-\frac{\mathfrak{i} u \Delta}{2} & -\mathfrak{i} \sqrt{c} \Delta \psi_{n}^{\dagger} \\
\mathfrak{i} \sqrt{c} \Delta \psi_{n} & 1+\frac{\mathfrak{i} u \Delta}{2}
\end{array}\right)+O\left(\Delta^{2}\right)
$$

with the Hamiltonian in the continual limit (spacing $\Delta \rightarrow 0$, number of sites $N \rightarrow \infty$ while $N \Delta \rightarrow L$, where L is a system length)

$$
\mathcal{H}=\int_{0}^{L} d x\left\{-\psi^{\dagger}(x) \partial_{x}^{2} \psi(x)+2 c\left(\psi(x)^{\dagger} \psi(x)\right)^{2}\right\}
$$

Algebraic Bethe ansatz

- Vacuums, creation and annihilation operators

$$
\begin{array}{r}
T(u)=\left(\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right), \\
\langle 0| T_{i j}(u)=0, \quad T_{i j}(u)|0\rangle=0, \quad\langle 0 \mid 0\rangle=1 .
\end{array}
$$

- Left and right vacuums $\langle 0|$ and $|0\rangle$ are eigenvectors of the diagonal matrix elements

$$
T_{i i}(u)|0\rangle=\Lambda_{i}(u)|0\rangle, \quad\langle 0| T_{i i}(\lambda)=\langle 0| \Lambda_{i}(u)
$$

- Bethe vectors are given by special polynomials on the monodromy matrix entries that act onto vacuum $|0\rangle$

$$
\begin{aligned}
|\bar{u}\rangle & =\left|u_{1}, \cdots, u_{a}\right\rangle=\operatorname{Pol}\left(T_{i j}\left(u_{k}\right)\right)|0\rangle, \\
\langle\bar{u}| & =\left\langle u_{1}, \cdots, u_{a}\right) \mid=\langle 0| \operatorname{Pol}\left(T_{i j}\left(u_{k}\right)\right) \mid .
\end{aligned}
$$

- Expressing explicitly matrix elements $T_{j k}$ in the Bethe vector it is easy to check by direct comparison that Bethe vectors defined via the monodromy matrix entries directly coincide with one given in initial formulation Bethe ansatz
- ABA is technically simplification in multiple application. Thus it is much simple to compute irreducible parts or symmetric form factors using ABA
- A lot of computation are depending only on the symmetry of R (for instance Lieb-Liniger has algebra symmetry $\mathfrak{g l}(2)$, Gaudin-Yang model has symmetry $\mathfrak{g l}(2 \mid 1))$
- General approach to the integrability: we know that the system is integrable and how to solve it if there exists Lax matrix
- Also it is clear how explicitly build the integrals of motion

Conclusions

- Dynamical case
- Finite temperature correlators
- Models with more internal degrees of freedom: i.e. models whose R-matrix has algebra symmetry different from the simplest cases $\mathfrak{g l}(2), \mathfrak{g l}(2 \mid 1), \mathfrak{g l}(3)$
- Expansion that will be valid for arbitrary particles densities and coupling constant

