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Green-Kubo theorem: in the linear response approximation kinetic coefficients {σ}
can be calculated via the correlataion functions

σ(q, ω) =
1

ωV

∫ ∞
0

dt e iωt
〈[

J†(q, t), J(q, 0)
]〉

+ i
ne2

ω
.

The problem is reduced to the computation of correlation functions

〈J†(x , t)J(0, 0)〉β =
∑
n

e−βEn〈ψn|J†(x , t)J(0, 0)|ψn〉

Where denotes |ψn〉 secondary quantized n-particles wave functions. If |ψ〉 are known
(usually they are not) correlators, in principle, can be computed using the normal
ordering procedure.
However...
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• High energy physics. Typical situation is a colliding experiment: pairwise scattering
of two free (at large distance) particles, interaction only the short range. Convenient
method: switching to the interaction representation, expansion in the series using
Feynman diagram technique
• Condensed matter physics. Many particles problem. Convenient method: effectively
restriction to a few-particles problem, the rest particles are the background and are
described by the additional effective fields or neglected. Example: superconductivity,
thus, electrons are organized in the Cooper pairs, interaction with other electrons is
neglected, interaction with ions are described by the phonon field
• The exact computation of observables between eigenvectors that contain large
number of (quasi)particles is extremely complicated problem even in case of the
simplest, for instance δ-like potential. Moreover the exact wave functions are usually
unknown. In condensed matter physics typical number of particles is 106 − 1010
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Eigenvectors

There exist 1D systems that can be solved using Bethe ansatz (1931), H. Bethe. The
k-particles secondary quantazied functions (also called Bethe vectors) can be presented
as

|ψ(u1, . . . , un)〉 =

∫
dx̄ χ(ū|x̄)ψ†(x1) . . . ψ†(xn)|0〉

ū = {u1, . . . , un}, x̄ = {x1, . . . , xn} with the following restrictions in the periodical case
(considered for simplicity)
• Wave function should satisfy following properties

χ(x̄ |u1 . . . , uj . . . uk . . . ) = −χ(x̄ |u1 . . . , uk . . . uj . . . ), j 6= k, j , k = 1, . . . , n,

χ(x1 . . . , xj + L . . . |ū) = χ(x1 . . . , xj . . . |ū), j = 1, . . . , n.

• We do not clarify Hamiltonian explicitly, but suggest that there exist factorization
properties of scattering
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Using the antisymmetric condition and factorization property we can write χᾱ(z̄ |ū) as

χ(z̄ |ū) =
∑
τ∈Sa

A(uτ1 , . . . , uτa)
a∏

k=1

χ̃(uτk |xσk ), xσ1 < · · · < xσk

where χ̃(u|x) = χ̃(u)e ip(u)x are one particle functions (plain waves) with a momentum
p and coefficients A(u1 . . . un) satisfy

A(. . . , uj . . . uk . . . )

A(. . . , uk . . . uj . . . )
= S(uj , uk), j 6= k , j , k = 1, . . . , n

S is an exponent of the two-particle scattering phase: S(w , u) = exp(iΦ(w , u)). Using
the property of periodicity we fix the following condition called Bethe equation

e−ip(uj )L
a∏

s 6=j

S(uj , us) = 1, j = 1, . . . , a.
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• Bethe vectors become the eigenvectors if the set of rapidities {ū} (known also as
Bethe or spectral parameters) satisfies the system of Bethe equation. Such Bethe
vectors are called on-shell. Otherwise Bethe vectors are called off-shell or generic.
Note: Bethe equation system and Bethe ansatz in general are more complicated the
(quasi)particles have internal degrees of freedom, for instance spin, different type of
particles, etc.
• Using the commutation relation commutation relations for fields
{ψ†α(x), ψβ(y)} = δα,βδ(x − y) correlation functions can be calculated
• The final expression is quite bulky combinatorial expression on the spectral
parameters {u}. The computatiotn pf the themodynamic limit, i.e. particles number
a→∞, system size L→∞ such that a/L = ρ (where ρ is density) is obviously not an
easy task
• There exist multiple approaches to calculate the thermodynamic limit.
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Norm of the eigenvector

〈ψn|ψn〉 =
∏
j>k

(uj − uk)2 + c2

(uj − uk)2
detG (ū)

Gjk is a Jacobian of Bethe equations

Gjk(ū) =
∂

∂uj

[
e ip(uk )

∏
`

S−1(uk , u`)

]
.

We define also G (ūI|ū), where Gjk(ūI|ū) denote a sub-block of matrix Gjk(ū) of size
m = #ūI., which is build from the columns and rows numerated by uj , uk ∈ ūI
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Connected form factors

Consider a finite part of operator O(x , y) = J†(x)J(y) between the on-shell Bethe
vectors (eigenvectors)

Fc
m(ū) = Fin lim

εi→0
〈ū + ε̄|O(x , y)|ū〉, u1 → u1 + ε1, u2 → u2 + ε2, . . .

Important on-shell condition applied before the limit. Define finite part

FinX : part of (X ) ∼ εj/εk = 0, j 6= k.

Finite size LeClair-Mussardo expansion

〈O(x , y)〉a (ū) =

∑
Fc
a−m (ūII) detG (ūI|ū)

detG (ū)

The sum is taken over all possible partitions ū → {ūI, ūII} including cases ūI = ∅,
ūII = ∅. Cardinalities are denoted as #ūI = m, #ūII = a−m.
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Thermodynamic limit of expansion

A. Leclair, G. Mussardo, Nucl. Phys. B 552 (1999), 624–642.
B. Pozsgay, G. Takacs, Nucl. Phys. B 788 (2008), 209–251.
The ratio of determinants

detG (ūI|ū)

detG (ū)
=
∏

uj∈ūII

ρ(uj),

ρ is the density function. The thermodynamic limit of the LM expansion

〈O(x , y)〉 =
∞∑
n=0

1

n!

n∏
j=1

∫
dtj

(2π)
Fc
n (t̄) ,

the integral is taking over the Fermi zone.
• How to compute Fc

n?
• Whether the series is converge fast enough?
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Symmetric form factor expansion

Define a symmetric limit of operator O(x , y) between the on-shell Bethe vectors
(eigenvectors). Important: on-shell condition is applied before the limit.

Fm(ū) = lim
ε→0
〈ū + ε|O(x , y)|ū〉, O(x , y) = J†(x)J(y),

i. e. on-shell condition is applied fist for left and right vectors and then the limit of the
left state to the right is taken. The finite size expansion is given by

〈O(x , y)〉a (ū) =

∑
Fa−m (ūII) detG (ūI)

detG (ū)

The sum is taken over all possible partitions ū → {ūI, ūII} including cases ūI = ∅,
ūII = ∅. Cardinalities are denoted as #ūI = m, #ūII = a−m.
B. Pozsgay, J. Stat. Mech. (2011), P01011,
B. Pozsgay, G. Takacs, J. Stat. Mech. 11 (2010), 12.
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Thermodynamic limit

The limit of two Gaudin determinants is given by

detG (ūI)

detG (ū)
=
∏

uj∈ūII

ω(uj)ρ(uj), ω(u) = exp

(
− 1

2π

∫ Q

−Q
dv K (v , u)

)
,

K (x , y) = ∂xS(x , y), ū = {ūI, ūII}, ±Q are Fermi boundaries, ρ is a density function of
Bethe parameters. Hereby the thermodynamic limit of LM expansion can be derived

〈O(x , y)〉 =
∞∑
n=0

1

n!

n∏
j=1

∫
dtj

(2π)
ω(tj)Fn (t̄) ,

The similar expansion for Bose gas was made by
D. B. Creamer, H. B. Thacker, D. Wilkinson, Phys. Rev. D 23 (1981)
• How to compute Fn?
• Whether the series is converge fast enough?
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Irreducible parts

Consider the limit with fixed momenta p(u). Important: on-shell condition is
applied before the limit.

Ia (ū) = lim
ε→0
〈ū + ε|O(x , y)|ū〉|

e
ip(uj )x

=const.
,

Expand Ia in the Fourier series An

Ia(ū) =
∑ m∏

j=1

e i(p(u−j )−ip(u+
j ))x − 1

An

(
ū+; ū−; ū0

)
.

where p is momenta, the sum is taken over all possible partitions ū → {ū+, ū−, ū0},
n = #ū+ = #ū− including cases ū+ = ū− = ∅ or ū0 = ∅
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Irreducible parts expansion

The following expansion can be established

〈Jα(x)Jβ(0)〉 = 〈Jα〉〈Jβ〉+
∞∑
k=2

Γk .

Γk =
1

k!

k∏
j=1

∫
dtj

(2π)
ω(tj)

∑
Ak

(
t̄+; t̄−; t̄0

)
exp

(
ixpn(t̄+; t̄−)

)
the sum is taken over all possible partitions of t̄ → {t̄+, t̄−, t̄0} including cases where
t̄+ = t̄− = ∅ or t̄0 = ∅. Pn(t̄+, t̄−) is a renormalised momentum

1 + Pn(s|ū+; ū−) =
∏
j∈ū+

f (uj , s)

f (s, uj)

∏
k∈ū−

f (s, uk)

f (uk , s)
exp

(∫ Q

−Q
K (p, s)Pn(s|ū+; ū−)ds

)

Note: here only Fourier coefficients depend on particular operators Jα.
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Physical system examples

Lieb-Liniger model (1D bose gas), E. H. Lieb, W. Liniger, Phys. Rev. 130 (1963)

H =

∫ L

0
dx

{
−ψ†(x)∂2

xψ(x) + κ
(
ψ(x)†ψ(x)

)2
}
,

Spin-1/2 1D Fermi gas, C. N. Yang, Phys. Rev. Lett. 19 (1967)

H =

∫ L

0
dx
{
∂ψ†α∂ψα + κψ†αψ

†
βψβψα

}
, α, β =↑, ↓,

{
ψ†α(x), ψβ(y)

}
= δαβδ(x − y).

Y.-K. Zhou, B.-H. Zhao, Phys. Lett. A. 123 (1987).
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V. E. Korepin, Comm. Math. Phys. 94 (1984), 93.

〈n(x)n(0)〉 =
Q2

π2
+

4Q2

cπ3
+

(
1 +

2

c

∂

∂xr

)
sin2(Qxr )

2π2x2
r

− 4Q

πc

sin2(Qxr )

2π2x2
r

+
1

c

4Q

(2π)3

sin2(Qx)

x2
+

2

c

∂

∂x
sin(Qx)

∫ Q

−Q

du

(2π)3
sin(ux) ln

(
Q + u

Q − u

)
Q is a Fermi boundary for the Bose gas, xr = x(1 + 2Q/(πc)).
In the same way it is easy to derive correlators in Fermi gas, where n↑↓ are densities
with the correspondent spin projections, n = n↑ + n↓

〈n(x)n(0)〉 =

(
Q2

π2
− sin2(Qx)

x2π2

)
+ O(1/c2).

〈n↑(x)n↓(0)〉 =
4Q2B

π3c
− 4B sin2(Qx)

π3x2c
+ O(1/c2).

Q is a Fermi boundary for the Fermi gas and B = n↑π
2c/(4Q)
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Algebraic Bethe ansatz (ABA)

The approach to integrability can be reformulated via the following axioms
• R-matrix satisfies Yang-Baxter equation

R12(u − v)R13(u)R23(v) = R23(v)R13(u)R12(u − v).

Equation holds in a tensor product of spaces C⊗3. Subscripts denote the number of
space in which Rjk acts nontrivially.
• The system is provided by the Lax operator L(v) that depends on spectral
parameters λ, µ and satisfies RLL-relation

R12(u − v)L13(u)L23(v) = L23(v)L13(u)R12(u − v).

Equation holds in a tensor product of spaces C⊗ C⊗H, H is a Hilbert space of the
one-site Hamiltonian, C is called an auxiliary space. Subscripts denote the numbers of
spaces in which Rjk acts nontrivially.
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• Monodromy matrix (the name is taken from the classical integrability) is expressed
via the Lax matrix as

T (u) = LN(u) · · · L1(u).

• All the information about the system is included in the monodromy matrix. Thus,
physical operators can be expressed via the monodromy matrix entries
• Trace of T matrix is called transfer matrix. t(u) is the generation function the
pairwise commuting integrals of motion {Qk} (natural extension of the classical
definition of integrability). Take the trace over the auxiliary space

tr0T01(u) =
∑
k

Qk(u − u0)k .

Hamiltonian included in this scheme, for example in considered cases as Q2
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Physical system examples

• Discrete version of 1D Bose gas with nonlinear interaction and lattice spacing ∆ and
lattice defined fields ψn, ψ†n

Ln(u) =
1

1− iu∆
2

(
1− iu∆

2 −i
√
c∆ψ†n

i
√
c∆ψn 1 + iu∆

2

)
+ O(∆2),

with the Hamiltonian in the continual limit (spacing ∆→ 0, number of sites N →∞
while N∆→ L, where L is a system length)

H =

∫ L

0
dx

{
−ψ†(x)∂2

xψ(x) + 2c
(
ψ(x)†ψ(x)

)2
}
,
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Algebraic Bethe ansatz

• Vacuums, creation and annihilation operators

T (u) =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 ,

〈0|Tij(u) = 0, Tij(u)|0〉 = 0, 〈0|0〉 = 1.

• Left and right vacuums 〈0| and |0〉 are eigenvectors of the diagonal matrix elements

Tii (u)|0〉 = Λi (u)|0〉, 〈0|Tii (λ) = 〈0|Λi (u).

• Bethe vectors are given by special polynomials on the monodromy matrix entries that
act onto vacuum |0〉

|ū〉 = |u1, · · · , ua〉 = Pol(Tij(uk))|0〉,
〈ū| = 〈u1, · · · , ua)| = 〈0|Pol(Tij(uk))|.
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• Expressing explicitly matrix elements Tjk in the Bethe vector it is easy to check by
direct comparison that Bethe vectors defined via the monodromy matrix entries
directly coincide with one given in initial formulation Bethe ansatz
• ABA is technically simplification in multiple application. Thus it is much simple to
compute irreducible parts or symmetric form factors using ABA
• A lot of computation are depending only on the symmetry of R (for instance
Lieb-Liniger has algebra symmetry gl(2), Gaudin-Yang model has symmetry gl(2|1))
• General approach to the integrability: we know that the system is integrable and how
to solve it if there exists Lax matrix
• Also it is clear how explicitly build the integrals of motion
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Conclusions

• Dynamical case
• Finite temperature correlators
• Models with more internal degrees of freedom: i.e. models whose
R-matrix has algebra symmetry different from the simplest cases
gl(2), gl(2|1), gl(3)
• Expansion that will be valid for arbitrary particles densities
and coupling constant
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