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Motivation:

• In the lack of analytical methods, the strong coupling 
behaviour of anomalous dimensions can be explored 
only numerically  

• Anomalous dimensions are important input data for 
numerical Conformal Bootstrap methods to 
constrain the OPE coefficients of the theory

N=4 SYM theory is a conformal field theory, thus anomalous dimensions
and OPE coeffcients are of primary importance for solving the theory

In the planar limit, with the help of integrability , we determined 
numerically  hundreds of anomalous dimensions with high 
precision in a wide range of ‘t Hooft coupling, because:



Outline

• Introduction : planar AdS/CFT spectral problem

• From integrability to Quantum Spectral Curve eqs. (QSC)

• QSC: a short summary 

• Numerical solution of QSC 

• Strong coupling results from numerical data 

Anomalous dimensions                  constraining OPE coefficients 

• Conclusion and summary



+  fermions 

AdS/CFT correspondence

String energies                                    anomalous dimensions

• Spectral problem of AdS/CFT

Type-II B string theory
on AdS5 x S5 background

N=4 Super Yang-Mills theory
with SU(Nc) gauge group

Parameters

Dictionary
‘t Hooft coupling

Radius of AdS5 x S5 

String tension
String coupling

isometry of AdS5 : SO(4,2)                   conformal symmetry

isometry of S5 :      SO(6)           rotation of 6 scalars
PSU(2,2|4)

fermions



AdS/CFT: planar limit
• Planar limit: Nc ∞                   gs 0 No string-interactions

• Integrability on both sides of the correspondence

String theory:
1+1 dim. integrable
σ-model on a cylinder

SYM:
Single trace operators:

PSU(2,2|4) long range spin-chain 

HamiltonianDilatation operator  

Fields:

t



AdS/CFT

2d string σ-model

Finite volume QFT in size L

S-matrix

Integral eqs. for
finite volume ground state energy

Integral eqs. for
the finite volume energy of any state

Y-system

T-system

Q-system

QSC equations Numerical solution

planar limit

Euclidean trick

symmetry

TBA

integrability
∞ volume

analytical 
continuation

Extension to the complex plane

reparametrization

“solution”

good choice of basis

analytical properties
discontinuity relations



Minimizing the free energy

• Complicated set of TBA integral equations

Important property: Y-system equations



• From analytical continuations of the ground state eqs.

• Solutions of the Y-system with specific analytical properties 

• AdS/CFT:

• Domain: reflects the PSU(2,2|4) symmetry 

Excited states



Reduction of the # of variables

• AdS/CFT  Y-system is hard to treat

• Find new variables in which the problem is simpler

• Y     T:

• T encodes the global symmetry of the model

• T     Q: finite # of variables

Characters of  representations belonging to (a,s) rectangular Young-tablouxs
satisfy constant T-system eqs.



How to imagine T  Q?
• Right-wing:

T    Q is similar to solving “a discrete  version”  of  Laplace-equation:

Here:



Discontinuities

• AdS/CFT: discontinuity relations

Branch points:

Re
2g-2g

i

2i

-2i

-i

Y-syst.+disc. rel.+analyticity TBA eqs.



Q-system

• T-hook: 28 Q-functions

• 8 independent:

• Symmetries:
Hodge-transformation:

H-symmetry:

Analyticity:

Gromov, Kazakov,
Leurent, Tsuboi ‘11



QSC equations 1.
Basis of Q-functions:

Pa, P
a,  a=1,..4 Qi, Q

i,  i=1,..4

Pμ Qω

Systems

Branch points of square root type: 

Gromov, Kazakov,
Leurent, Volin ‘13



QSC equations 2.

have no poles!
have no poles!



QSC equations 3.
• Unique solution: analyticity + large u asymptotics

etc.

Lorentz 
spins

SO(6) labels



Characterization of states
• States form multiplets with respect to the full psu(2,2|4) 

symmetry of the theory

• Multiplets are characterized by their g=0, quantum 
numbers:

• All degeneracies are lifted only by quantum corrections

B                L

Lorentz 
spins SO(6) labels

classical 
dimension

Hyper-charge

Length



Numerical solution of QSC 
• Parametrization:

• Radius of convergence :

• At weak coupling:

• If the loop order is fixed only a finite # of coeffs. 
contribute

’15 Gromov et al.

Zhukovsky-variable:

short cut version:



Numerical solution of QSC 2.

• 1st step:                                          through Qa|i UHPA

• 2nd step: close the equations

by  gluing conditions:

Solve:

Then:



Numerical solution of QSC 3.

• In reality the gluing equations are imposed in a           
“ backward” transformed form:  Qi Pa ca,n

Gluing conditions imply:

Define a new P:

In numerics the equality of the coefficients are imposed: 



Success of QSC

• 11-loop results at weak coupling

• Bremstrahlung-function for the quark-anti-quark 
potential upto (θ-φ)2 order

• Small spin expansion upto O(S2) 

• NNLO results in the BFKL (S     -1) limit

• Strong coupling solution still lacks!

QSC: nonlinear Riemann-Hilbert problem for a few unknowns

Very efficient!

‘18 Marboe,Volin

‘14 Alfimov,Gromov, Kazakov

‘14 Gromov,L-Mashlyuk, Sizov, Valatka

‘15 Gromov,Levkovich-Mashlyuk

‘15 Gromov,L-Mashlyuk, Sizov



Numerical work

• We made a publicly available C++ implementation 
of the numerical algorithm

• We determined ∆ for all 219 states with 

in a wide range of the ‘t Hooft coupling: 

0≤g≤gmax with  gmax =2, 5 depending on the state

I.e: 0≤λ≤ λ max with λ max ≈630, 4000 

We determined some leading strong coupling 
expansion coefficients  of these ∆s

We analyzed the results



Numerical results



Testing some know formulas

• ∆ at strong coupling:

• Analytical predictions:

‘11 Basso
’11 Gromov , Serban, Shenderovich, Volin
‘11 Roiban, Tseytlin , ‘11 Vallilo, Mazzucato

‘14 Gromov, L-Maslyuk, Sizov, Valatka

There are predictions for the minimal anomalous 
dimension for states with quantum numbers:  

[S-2, S-2, 0, L-2, 0]         ∆0=L+S-2

Convincing numerical agreement!



Numerical results for the Konishi

• Good agreement!

S=L=2  case

Tr (ΦIΦI)



Numerical results



Strong coupling analysis of data 

• Expectations from string theory,                                     
for states with 

• General expectation:

• We fitted the data according to this formula

Gubser,Klebanov,
Polyakov ‘98

δ- string mass level (integer) 



Determination of 

• Assuming that the series of the quadratic Casimir: 

• runs in  powers of          , implies:

• which is supported by all of our fitted values.

(state independent)



Determining d1   - Kaluza-Klein towers
• At strong coupling string-states can be 

characterized by flat space limit quantum numbers

• AdS5×S
5

SO(9)                 SO(4) ×SO(5)

• To each such state a Kaluza-Klein tower of SO(6) 
representations can be assigned :

• Each SYM state can be associated to a KK-tower

SO(5)SO(4)

SO(6)

Bianchi et al. ‘03



Determining d1
• Kaluza-Klein tower structure at δ=fixed is known:

• The strong coupling behaviour of the Casimir:

• Numerical data suggests, that j1 is constant within a 
KK-tower

• This implies the following formula for the next 
coefficient d1

δ=1: δ=2:

etc.



Restricting some OPE coefficients
• The previous knowledge on strong coupling behaviour of ∆s, 

allows one to constrain or in some cases to determine  the 
leading strong coupling coefficients of some structure 
constants 

• Consider the 4-pt function of:  (graviton scattering amplitude)

• The 4-pt function is a function of cross ratios:

is  a fundamental real scalar  is a polarisation nullvector

R-symmetry 
cross ratios

conformal 
cross ratios

20’ ½-BPS

Alday, 
Hansen ‘22



Restricting the OPE coefficients
• Superconformal symmetry imples:

explicitly known explicitly known

Conformal crossing relation:

Expansion in terms of conformal blocks:

Conformal blocks:

Contributing states:

Twist:

OPE coeff.

Dolan, Osborne ‘04

Alday, Hansen Silva ‘22



Restricting the OPE coefficients
• Strong coupling structure of OPE coefficients:

• f has the usual expansion:

Alday, 
Hansen
Silva ‘22

The twist at strong coupling:

The  values of  δ and T1 are known from our numerical work 
for the lowest lying states, which is necessary to restrict the 
values for the coefficients f0,1,2



Restricting the OPE coefficients
• Comparison of strong coupling string theory results to 

conformal block expansion led to sums rules along 
“Regge-trajectories” defined by the numbers:  

• On the 1st Regge-trajectory: t=1, upto δ≤7 , there is only 
one state, so average gives the exact values for       ,     ,      

for these special states

On the 2nd Regge-trajectory t=2 with δ=2, there are only 2 
states. Thus our knowledge on T1 allows us to determine, 
the leading coefficients for these states.

Alday, 
Hansen 
Silva ‘22

The averages:           ,          ,            ,               
are available on various Regge-trajectories



Restricting the OPE coefficients
• The 2 states on the 2nd Regge-trajectory  with δ=2 

have the quantum numbers:

[0,0,0,0,0]         ∆0=L=4       B=0

They are degenerate at g=0, only quantum 
corrections lift this degeneracy:

∆=∆0+g2 (13 +√41)+…  

From fitting the numerical data at strong coupling:

δ=2     

“-”          3rd
“+”          4th

states in our 
database



Restricting the OPE coefficients
• The average formulas on the 2nd Regge-trajectory:

• Applying to our case with δ=2:

Alday, 
Hansen 
Silva  ‘22

where:

Solution:



Restricting OPE coefficients

• On other Regge-trajectories there are more operators 
(unknows), than the number of equations for 
averages. Thus, we cannot make exact determination 
of the coeffcients f0,1,2 .

• However, using their positivity: f0,1,2≥0, 

inequalities giving lower and upper bonds can be 
derived.

In a recent paper: J. Julius, N. Sokolova ‘23

Assuming:  j1=const. in a KK-tower, could show that:

-f0 is  the same for all states within a KK-tower

-they could determine the values for  f0



Summary

• We solved numerically the QSC equations with high 
precision for all the 219 states with ∆0≤6 in a wide 
range of the ‘t Hooft coupling.

• We fitted (at least) the first 3 coefficients of the 
strong coupling series of the ∆s

• With these data, we could associate the states to 
specific Kaluza-Klein towers

• We could restrict some OPE coefficients of our states

with two rank-2 symmetric traceless ½-BPS 
operators.





Spin-chain description

• Planar limit: single trace → spin chain description

• SUSY protected BPS states: Tr(ΦΦΦ…Φ)

• Vacuum: Tr(ΦΦΦ…Φ) ↔ string vacuum

Long operators ↔ large volume:                S-matrix


