# Strong coupling results from the numerical study of the spectrum in planar N=4 SYM theory

Based on: N.Gromov,Á. Hegedűs, J. Julius,N. Sokolova: arXiv:2306.12379

# Motivation:

N=4 SYM theory is a conformal field theory, thus anomalous dimensions and OPE coeffcients are of primary importance for solving the theory

In the planar limit, with the help of integrability , we determined numerically hundreds of anomalous dimensions with high precision in a wide range of 't Hooft coupling, because:

- In the lack of analytical methods, the strong coupling behaviour of anomalous dimensions can be explored only numerically
- Anomalous dimensions are important input data for numerical Conformal Bootstrap methods to constrain the OPE coefficients of the theory

# Outline

- Introduction : planar AdS/CFT spectral problem
- From integrability to Quantum Spectral Curve eqs. (QSC)
- QSC: a short summary
- Numerical solution of QSC
- Strong coupling results from numerical data

Anomalous dimensions

constraining OPE coefficients

Conclusion and summary

### AdS/CFT correspondence



• Spectral problem of AdS/CFT



Fields:  $\frac{PSU(2,2|4)}{SO(4,1) \times SO(5)}$  PSU(2,2|4) long range spin-chain

Dilatation operator  $\leftrightarrow$  Hamiltonian



# Minimizing the free energy $\frac{\delta}{\delta \rho}(E - T \cdot S) = 0$

 $\frac{\delta}{\delta\rho} \left(\sum_{n} \epsilon(p_n) - T \cdot (\text{number of microstates}) + \lambda \cdot (\text{ABA eqs.})\right) = 0$ 

Complicated set of TBA integral equations

$$\ln Y_A(u) = \epsilon_A(u) + K_{AB} \star \ln(1+Y_B) \qquad \ln Y_A(u) \sim \frac{\rho_a^{(h)}(u)}{\rho_a(u)}$$
$$E_0(L) = \sum_A \int du \epsilon_A(u) \ln(1+Y_A(u))$$

**Important property: Y-system equations** 

$$Y_{a,s}(u+i/2) Y_{a,s}(u-i/2) = \frac{\left(1+Y_{a,s-1}(u)\right)\left(1+Y_{a,s+1}(u)\right)}{\left(1+\frac{1}{Y_{a-1,s}(u)}\right)\left(1+\frac{1}{Y_{a+1,s}(u)}\right)}$$

### **Excited states**

- From analytical continuations of the ground state eqs.
- Solutions of the Y-system with specific analytical properties



• Domain: reflects the PSU(2,2|4) symmetry

### Reduction of the # of variables

- AdS/CFT Y-system is hard to treat
- Find new variables in which the problem is simpler

• **Y** 
$$\rightarrow$$
 **T**:  $Y_{a,s} = \frac{T_{a,s-1} T_{a,s+1}}{T_{a-1,s} T_{a+1,s}}$ 

 $T_{a,s}(u+i/2) T_{a,s}(u-i/2) = T_{a,s-1}(u) T_{a,s+1}(u) + T_{a-1,s}(u) T_{a+1,s}(u)$ 

#### • T encodes the global symmetry of the model

Characters of representations belonging to (a,s) rectangular Young-tablouxs satisfy constant T-system eqs.

•  $T \rightarrow Q$ : finite # of variables



 $T \rightarrow Q$  is similar to solving "a discrete version" of Laplace-equation:

$$T_s^+ T_s^- = T_{s-1} T_{s+1} \longrightarrow T_s(u) = f_L(u - i \frac{s}{2}) f_R(u + i \frac{s}{2})$$

Here:

$$T_{1,s}(u) = P_1(u+i\frac{s}{2}) P_2(u-i\frac{s}{2}) - P_1(u-i\frac{s}{2}) P_2(u+i\frac{s}{2})$$

## Discontinuities

• AdS/CFT: discontinuity relations disc $(\ln Y)_n = \mathcal{F}_n(Y)$ disc $f_n(u) = f(u + i n + i 0) - f(u + i n - i 0)$ 

Branch points: 
$$u = \pm 2g + i\mathbb{Z}$$
  $g = \frac{\sqrt{\lambda}}{4\pi}$ 

Y-syst.+disc. rel.+analyticity **TBA** eqs.



Gromov, Kazakov,

# Q-system

Leurent, Tsuboi '11

• **T-hook:** 2<sup>8</sup> **Q-functions**  $Q_{A|I}(u)$   $A = \{a_1, a_2, \dots\}$  a, i = 1, 2, 3, 4 $Q_{\dots ab\dots|\dots ij\dots} = -Q_{\dots ba\dots|\dots ij\dots} = Q_{\dots ba\dots|\dots ji\dots}$ 

- 8 independent:  $Q_{A|I}Q_{Aab|I} = Q_{Aa|I}^+Q_{Ab|I}^- Q_{Aa|I}^-Q_{Ab|I}^+$  $Q_{A|I}Q_{A|Iij} = Q_{A|Ii}^+Q_{A|Ij}^- - Q_{A|Ii}^-Q_{A|Ij}^+$  $Q_{Aa|I}Q_{A|Ii} = Q_{Aa|Ii}^+Q_{A|Ii}^- - Q_{A|I}^+Q_{Aa|Ii}^-$
- Symmetries:

| Hodge-transformation:                                                   | $\{A'\} = \{1, 2, 3, 4\} \setminus \{A\}$ |
|-------------------------------------------------------------------------|-------------------------------------------|
| $Q^{A I} \equiv (-1)^{ A'  I } \epsilon^{A'A} \epsilon^{I'I} Q_{A' I'}$ | $\{I'\} = \{1, 2, 3, 4\} \setminus \{I\}$ |

H-symmetry:

$$Q_{A|I} \to \sum_{\substack{|B|=|A|\\|J|=|I|}} (H_b^{[|A|-|I|]})_A{}^B (H_f^{[|A|-|I|]})_I{}^J Q_{B|J} \quad H^+ = H^-$$

Analyticity:

$$Q^{\text{LHPA}} = H \cdot Q^{\text{UHPA}} \qquad \qquad H^+ = H^-$$



# QSC equations 2.

2g

 $P^a P_a = 0, \qquad a = 1, ..., 4$  $\mu_{ab} - \tilde{\mu}_{ab} = \tilde{\mathbf{P}}_a \, \mathbf{P}_b - \tilde{\mathbf{P}}_b \, \mathbf{P}_a,$  $\tilde{\mathbf{P}}_a = \mu_{ab} \mathbf{P}^b,$  $\mu_{ab}(u) = \mu_{ab}(u+i),$  $Pf(\mu) \equiv \mu_{12}\mu_{34} - \mu_{13}\mu_{24} + \mu_{14}\mu_{23} = 1.$  $\mu_{ab} = -\mu_{ba}$  $f(u) \to f(u)$  $\mathbf{P}_{a}, \mu_{ab}$  have no poles!

-2g

 $\mathbf{Q}^i \, \mathbf{Q}_i = 0, \qquad i = 1, ..., 4,$  $\omega_{ij} - \tilde{\omega}_{ij} = \tilde{\mathbf{Q}}_i \, \mathbf{Q}_j - \tilde{\mathbf{Q}}_j \, \mathbf{Q}_j,$  $\mathbf{Q}_i = \omega_{ij} \mathbf{Q}^j,$  $\omega_{ii}(u) = \omega_{ii}(u+i),$  $Pf(\omega) = 1.$  $\omega_{ij} = -\omega_{ji}$ 

 $\mathbf{Q}_i,\,\omega_{ij}$  have no poles!

# QSC equations 3.

• Unique solution: analyticity + large u asymptotics

$$\mathbf{P}_a \sim A_a u^{-\tilde{M}_a}, \qquad \qquad \mathbf{Q}_i \sim B_i u^{\hat{M}_i - 1},$$

- $\mathbf{Q}^i \sim B^i u^{-\hat{M}_i}$  $\omega_{ij} \to \text{const.}$  $\mathbf{P}^a \sim A^a u^{\tilde{M}_a - 1}.$
- $\mu_{12} \sim u^{\Delta L}, \ \mu_{13} \sim u^{\Delta 1}, \ \text{etc.}$

$$\hat{M}_i = \left\{ 1 + \frac{\Delta - \ell_1}{2}, 2 + \frac{\Delta + \ell_1}{2}, -1 - \frac{\Delta + \ell_2}{2}, -\frac{\Delta - \ell_2}{2} \right\}$$

$$\tilde{M}_a = \left\{2 - \frac{p}{2} - \frac{3q_1 + q_2}{4}, 1 - \frac{p}{2} + \frac{q_1 - q_2}{4}, \frac{p}{2} + \frac{q_1 - q_2}{4}, -1 + \frac{p}{2} + \frac{q_1 + 3q_2}{4}\right\}$$

 $\left[\ell_1 \ \ell_2 \ q_1 \ p \ q_2\right]$ **\_\_\_**\_\_ Lorentz SO(6) labels spins

#### Characterization of states

- States form multiplets with respect to the full psu(2,2|4) symmetry of the theory
- Multiplets are characterized by their g=0, quantum numbers:



• All degeneracies are lifted only by quantum corrections

# Numerical solution of QSC '15 Gromov et al.

• Parametrization:

Zhukovsky-variable:  $x + \frac{1}{x} = \frac{u}{a}$ :  $\tilde{x} = \frac{1}{x}$ 

|x| > 1

short cut version:  $\mathbf{P}_a(u) = \sum_{n=0}^{\infty} \frac{c_{a,n}(g)}{x(u)^{\tilde{M}_a + n}}$ 2g+i-2g-2g-i $\tilde{\mathbf{P}}_{a}(u) = \sum c_{a,n}(g) \, x(u)^{\tilde{M}_{a}+n}$ 

- Radius of convergence : R(g) = |x(2g+i)|
- $c_{a,n}(g) \sim q^{|n|}$ • At weak coupling:
- If the loop order is fixed only a finite # of coeffs. contribute

### Numerical solution of QSC 2.

- 1<sup>st</sup> step:  $P_a \to Q_i, \tilde{Q}_i$  through  $Q_{a|i}$  UHPA
- Solve:  $\mathcal{Q}_{a|i}(u+\frac{i}{2}) \mathcal{Q}_{a|i}(u-\frac{i}{2}) = -\mathbf{P}_a(u)\mathbf{P}^b(u)\mathcal{Q}_{b|i}(u+\frac{i}{2})$   $a, i \in \{1, 2, 3, 4\}.$

Then: 
$$\mathbf{Q}_{i}(u) = -\mathbf{P}^{a}(u) \ \mathcal{Q}_{a|i}(u+i/2)$$
  
 $\tilde{\mathbf{Q}}_{i}(u) = -\tilde{\mathbf{P}}^{a}(u) \ \mathcal{Q}_{a|i}(u+i/2).$   $\mathbf{P}^{a}(u) = -\tilde{\mathbf{P}}^{a}(u) \ \mathcal{Q}_{a|i}(u+i/2).$ 



• 2<sup>nd</sup> step: close the equations by gluing conditions:

$$\begin{split} \tilde{\mathbf{Q}}_{i} &= G_{ij} \, \bar{\mathbf{Q}}^{j} ,\\ \tilde{\mathbf{Q}}^{i} &= G^{ij} \, \bar{\mathbf{Q}}_{j} , \end{split} \qquad G_{ij} = \begin{pmatrix} 0 & \alpha_{1} & 0 & 0 \\ \alpha_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta_{1} \\ 0 & 0 & \beta_{2} & 0 \end{pmatrix}_{ij} \qquad \beta_{1} = \bar{\beta}_{2} \end{split}$$

# Numerical solution of QSC 3.

• In reality the gluing equations are imposed in a "backward" transformed form:  $Q_i \rightarrow P_a \rightarrow c_{a,n}$ 

**Define a new P:** 
$$\mathbf{P}'_a(u) = -Q^+_{a|k} G^{kj} \bar{\mathbf{Q}}_j(\{c\}, u)$$

Gluing conditions imply:  $\mathbf{P}'_a(u) = \mathbf{P}_a(u)$ 

In numerics the equality of the coefficients are imposed:

$$c_{a,n} = c'_{a,n}(\{c\})$$

$$\mathbf{P}'_{a}(u) = \sum_{n=0}^{\infty} \frac{c'_{a,n}(g)}{x(u)^{\tilde{M}_{a}+n}}$$

# Success of QSC

QSC: nonlinear Riemann-Hilbert problem for a few unknowns Very efficient!

- 11-loop results at weak coupling '18 Marboe, Volin
- Bremstrahlung-function for the quark-anti-quark potential upto  $(\theta \phi)^2$  order  $_{15 \text{ Gromov, Levkovich-Mashlyuk}}^{15 \text{ Gromov, Levkovich-Mashlyuk}}$
- Small spin expansion upto  $O(S^2)$  '14 Gromov,L-Mashlyuk, Sizov, Valatka
- NNLO results in the BFKL (S → -1) limit '14 Alfimov,Gromov, Kazakov '15 Gromov,L-Mashlyuk, Sizov
- Strong coupling solution still lacks!

# Numerical work

- We made a publicly available C++ implementation of the numerical algorithm
- We determined  $\Delta$  for all 219 states with  $\Delta_0 \leq 6$ in a wide range of the 't Hooft coupling:  $0 \leq g \leq g_{max}$  with  $g_{max} = 2, 5$  depending on the state I.e:  $0 \leq \lambda \leq \lambda_{max}$  with  $\lambda_{max} \approx 630, 4000$

We determined some leading strong coupling expansion coefficients of these  $\Delta s$ 

We analyzed the results

# Numerical results



#### Testing some know formulas

There are predictions for the minimal anomalous dimension for states with quantum numbers:  $[S-2, S-2, 0, L-2, 0] \qquad \Delta_0 = L + S-2$ 

•  $\Delta$  at strong coupling:

$$\Delta = \Delta^{(0)}\lambda^{\frac{1}{4}} + \Delta^{(1)}\lambda^{-\frac{1}{4}} + \Delta^{(2)}\lambda^{-\frac{3}{4}} + \Delta^{(3)}\lambda^{-\frac{5}{4}} + \Delta^{(4)}\lambda^{-\frac{7}{4}} + \Delta^{(5)}\lambda^{-\frac{9}{4}} + \dots$$

• Analytical predictions:

'11 Basso '11 Gromov, Serban, Shenderovich, Volin '11 Roiban, Tseytlin, '11 Vallilo, Mazzucato '14 Gromov, L-Maslyuk, Sizov, Valatka

$$\Delta^{(0)} = \sqrt{2S}, \qquad \Delta^{(1)} = \frac{2L^2 + S(3S - 2)}{4\sqrt{2S}},$$

$$\Delta^{(2)} = \frac{-21\,S^4 + (24 - 96\,\zeta_3)S^3 + 4\,(5L^2 - 3)\,S^2 + 8L^2S - 4L^4}{64\sqrt{2}\,S^{3/2}},$$

**Convincing numerical agreement!** 



# Numerical results



### Strong coupling analysis of data

• Expectations from string theory, for states with  $[\ell_1 \ \ell_2 \ q_1 \ p \ q_2] \sim 1$  Gubser,Klebanov, Polyakov '98

 $\Delta \simeq 2 \sqrt{\delta} \lambda^{1/4}$   $\delta$ - string mass level (integer)

• General expectation:

$$\Delta = \Delta_{\text{reg}} + \Delta_{\text{const}}$$
$$\Delta_{\text{reg}} = (\delta \sqrt{\lambda})^{1/2} \left( 2 + \sum_{n=1}^{\infty} \frac{d_n}{(\delta \sqrt{\lambda})^n} \right)$$

• We fitted the data according to this formula

# Determination of $\Delta_{\text{const}}$

• Assuming that the series of the quadratic Casimir:

$$J^{2} = \frac{1}{2}(\Delta + 2)^{2} - 2 + \frac{1}{4}\ell_{1}(\ell_{1} + 2) + \frac{1}{4}\ell_{2}(\ell_{2} + 2) - \frac{1}{4}q_{1}(q_{1} + 2) - \frac{1}{4}q_{2}(q_{2} + 2) - \frac{1}{8}(2p + q_{1} + q_{2})^{2} - (2p + q_{1} + q_{2})$$

• runs in powers of  $1/\sqrt{\lambda}$ , implies:

$$\Delta_{\texttt{const}} = -2$$
 (state independent)

• which is supported by all of our fitted values.

## Determining d<sub>1</sub> - Kaluza-Klein towers

• At strong coupling string-states can be characterized by flat space limit quantum numbers

• 
$$AdS_5 \times S^5 \longrightarrow SO(9) \longrightarrow SO(4) \times SO(5)$$

• To each such state a Kaluza-Klein tower of SO(6) representations can be assigned : Bianchi et al. '03

$$\begin{bmatrix} \ell_1 \ \ell_2; \ m \ n \end{bmatrix} = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{p=m-r}^{\infty} \left[ \ell_1 \ , \ \ell_2 \ , \ r+n-s \ , \ p \ , \ r+s \end{bmatrix} + \sum_{r=0}^{m-1} \sum_{s=0}^{n-1} \sum_{p=m-r-1}^{\infty} \left[ \ell_1 \ , \ \ell_2 \ , \ r+n-s \ , \ p \ , \ r+s+1 \right]$$
SO(6)

• Each SYM state can be associated to a KK-tower



- Kaluza-Klein tower structure at  $\delta$ =fixed is known:
- $\delta = 1: \quad \begin{bmatrix} 0 & 0; & 0 & 0 \end{bmatrix} \qquad \delta = 2: \quad 2\begin{bmatrix} 0 & 0; & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0; & 2 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0; & 0 & 2 \end{bmatrix} + 2\begin{bmatrix} 1 & 1; & 1 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 2; & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0; & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 2; & 0 & 0 \end{bmatrix}$ etc.
- The strong coupling behaviour of the Casimir:  $J^2\simeq 2\,\delta\sqrt{\lambda}+j_1$
- Numerical data suggests, that  $\boldsymbol{j}_1$  is constant within a KK-tower
- This implies the following formula for the next coefficient  $d_1$

$$d_{1} = \frac{p^{2}}{4} + \frac{p}{4} \left(q_{1} + q_{2} + 4\right) + \frac{1}{16} \left[16 - 2\ell_{1} \left(\ell_{1} + 2\right) - 2\ell_{2} \left(\ell_{2} + 2\right) + 3q_{1} \left(q_{1} + 4\right) + 3q_{2} \left(q_{2} + 4\right) + 2q_{1} q_{2}\right] + \frac{j_{1}}{2}$$

#### **Restricting some OPE coefficients**

- The previous knowledge on strong coupling behaviour of Δs, allows one to constrain or in some cases to determine the leading strong coupling coefficients of some structure constants
- Consider the 4-pt function of: (graviton scattering amplitude)

 $\mathcal{O}_2(\vec{x}, Y) \equiv \operatorname{Tr} \Phi_I(\vec{x}) \Phi_J(\vec{x}) Y^I Y^J \qquad 20^{\prime} \quad \frac{1}{2}\text{-BPS}$ 

 $\Phi_I$  is a fundamental real scalar

 $Y^I$  is a polarisation nullvector

• The 4-pt function is a function of cross ratios:  $\langle \mathcal{O}_2(\vec{x}_1, Y_1) \mathcal{O}_2(\vec{x}_2, Y_2) \mathcal{O}_2(\vec{x}_3, Y_3) \mathcal{O}_2(\vec{x}_4, Y_4) \rangle = \frac{Y_{12}^2 Y_{34}^2}{x_{12}^4 x_{34}^4} \mathcal{S}(U, V; \sigma, \tau)$ 

$$U \equiv \frac{x_{1\,2}^2 x_{3\,4}^2}{x_{1\,3}^2 x_{2\,4}^2} \equiv z \,\bar{z} \,, \quad V \equiv \frac{x_{1\,4}^2 x_{2\,3}^2}{x_{1\,3}^2 x_{2\,4}^2} \equiv (1-z) \,(1-\bar{z}) \quad \begin{array}{c} \text{conformal} \\ \text{cross ratios} \end{array} \quad x_{i\,j} \equiv x_i - x_j \\ \end{array}$$

 $\sigma \equiv \frac{Y_{13}.Y_{24}}{Y_{12}.Y_{34}}, \quad \tau \equiv \frac{Y_{14}.Y_{23}}{Y_{12}.Y_{34}}$ 

R-symmetry cross ratios

 $Y_{IJ} \equiv Y_I \cdot Y_J$ 

#### **Restricting the OPE coefficients**

Superconformal symmetry imples:

 $\mathcal{S}(U,V;\sigma,\tau) = \mathcal{S}_{\texttt{free}}(U,V;\sigma,\tau) + \Theta(U,V;\sigma,\tau) \mathcal{T}(U,V)$ 

explicitly known

explicitly known

Conformal crossing relation:

 $\mathcal{T}(U,V) = \mathcal{T}(1/U, V/U) = 1/V^2 \mathcal{T}(U/V, 1/V)$ 

Expansion in terms of conformal blocks:

Alday, Hansen Silva '22

$$\mathcal{T}(U,V) = U^{-2} \sum_{T,\ell} C_{T,\ell}^2 G_{T+4,\ell}(U,V) \qquad \text{Twist:} \quad T \equiv \Delta - \ell$$
  
OPE coeff.

Contributing states:  $[\ell \ \ell \ 0 \ 0 \ 0] \qquad \ell = 0, 2, 4 \dots$ 

**Conformal blocks:** 

Dolan, Osborne '04

$$G_{T,\ell}(U,V) = \frac{z z}{z - \bar{z}} \left( k_{T+2\ell}(z) k_{T-2}(\bar{z}) - k_{T+2\ell}(\bar{z}) k_{T-2}(z) \right)$$
$$k_h(z) \equiv z^{\frac{h}{2}} {}_2F_1(h/2, h/2, h, z)$$

#### **Restricting the OPE coefficients**

Silva '22

• Strong coupling structure of OPE coefficients: Alday, Hansen

$$C^{2}(\lambda) = \frac{\pi^{3}}{2^{12}} \frac{2^{-2T(\lambda)}T(\lambda)^{6}}{\sin^{2}\left(\frac{\pi T(\lambda)}{2}\right)} \frac{1}{2^{2\ell}(\ell+1)} f(\lambda)$$

• f has the usual expansion:

$$f(\lambda) \simeq f_0 + \frac{f_1}{\lambda^{1/4}} + \frac{f_2}{\lambda^{1/2}}$$

The twist at strong coupling:

$$T(\lambda) \simeq 2\sqrt{\delta}\,\lambda^{\frac{1}{4}} - 2 - \ell + \frac{T_1}{\lambda^{1/4}} \qquad \qquad T_1 \equiv \frac{d_1}{\sqrt{\delta}}$$

The values of  $\delta$  and  $T_1$  are known from our numerical work for the lowest lying states, which is necessary to restrict the values for the coefficients  $f_{0,1,2}$ 

#### <u>Restricting the OPE coefficients</u>

 Comparison of strong coupling string theory results to conformal block expansion led to sums rules along Alday, "Regge-trajectories" defined by the numbers: Hansen

Silva '22

$$t \equiv \delta - \ell/2$$

The averages:  $\langle f_0 \rangle$ ,  $\langle f_2 \rangle$ ,  $\langle f_1 \rangle$ ,  $\langle T_1 f_0 \rangle$ are available on various Regge-trajectories

• On the 1st Regge-trajectory: t=1, upto  $\delta \leq 7$ , there is only one state, so average gives the exact values for  $f_0$ ,  $f_1$ ,  $f_2$ for these special states

On the 2<sup>nd</sup> Regge-trajectory t=2 with  $\delta$ =2, there are only 2 states. Thus our knowledge on T<sub>1</sub> allows us to determine, the leading coefficients for these states. **Restricting the OPE coefficients** 

• The 2 states on the 2<sup>nd</sup> Regge-trajectory with  $\delta = 2$ have the quantum numbers:

[0,0,0,0,0]  $\Delta_0 = L = 4$  B=0

They are degenerate at g=0, only quantum corrections lift this degeneracy: ·· · · · · 3rd "+"  $\Delta = \Delta_0 + g^2 (13 \pm \sqrt{41}) + \dots$ states in our database

⊿<sup>th</sup>

From fitting the numerical data at strong coupling:

**δ=2** 
$$T_{1;3} = \sqrt{2}$$
,  $T_{1;4} = 4\sqrt{2}$ 

$$T(\lambda) \simeq 2\sqrt{\delta} \lambda^{\frac{1}{4}} - 2 - \ell + \frac{T_1}{\lambda^{1/4}} \qquad T \equiv \Delta -$$

#### **Restricting the OPE coefficients**

• The average formulas on the 2<sup>nd</sup> Regge-trajectory:

$$\langle f_0 \rangle = \frac{r_1(\delta)}{3} \left( 2\delta^2 + 3\delta - 8 \right)$$
 Alday,  
Hansen Silva '22

$$\langle f_0 T_1 \rangle = \frac{r_1(\delta)}{18\sqrt{\delta}} \left( 18\delta^4 + 25\delta^3 - 57\delta^2 + 50\delta - 72 \right)$$
  
where:  
$$r_n(\delta) = \frac{4^{2-2\delta}\delta^{2\delta-2n-1}(2\delta - 2n - 1)}{\Gamma(\delta)\Gamma\left(\delta - \lfloor \frac{n}{2} \rfloor\right)}$$

• Applying to our case with  $\delta=2$ :

Solution:

$$\langle f_0 \rangle = f_{0;3} + f_{0;4} = \frac{1}{4}$$
  
 $\langle f_0 T_1 \rangle = f_{0;3} T_{1;3} + f_{0;4} T_{1;4} = \sqrt{2}$ 

$$f_{0; 3} = 0 , \qquad f_{0; 4} = \frac{1}{4}$$

#### **Restricting OPE coefficients**

- On other Regge-trajectories there are more operators (unknows), than the number of equations for averages. Thus, we cannot make exact determination of the coeffcients  $f_{0,1,2}$ .
- However, using their positivity: f<sub>0,1,2</sub>≥0,
   inequalities giving lower and upper bonds can be derived.

In a recent paper: J. Julius, N. Sokolova '23

Assuming: j1=const. in a KK-tower, could show that:

-f<sub>o</sub> is the same for all states within a KK-tower

-they could determine the values for  $f_o$ 



- We solved numerically the QSC equations with high precision for all the 219 states with  $\Delta_0 \leq 6$  in a wide range of the 't Hooft coupling.
- We fitted (at least) the first 3 coefficients of the strong coupling series of the  $\Delta s$
- With these data, we could associate the states to specific Kaluza-Klein towers

• We could restrict some OPE coefficients of our states with two rank-2 symmetric traceless <sup>1</sup>/<sub>2</sub>-BPS operators.



#### Spin-chain description

- Planar limit: single trace  $\rightarrow$  spin chain description
- SUSY protected BPS states: Tr(ΦΦΦ...Φ)
- Vacuum:  $Tr(\Phi\Phi\Phi...\Phi) \leftrightarrow string vacuum$

