## Strong coupling results from the numerical study of the spectrum in planar N=4 SYM theory

Based on:
N.Gromov,Á. Hegedűs, J. Julius,N. Sokolova:
arXiv:2306.12379

## Motivation:

$\mathrm{N}=4$ SYM theory is a conformal field theory, thus anomalous dimensions and OPE coeffcients are of primary importance for solving the theory

In the planar limit, with the help of integrability, we determined numerically hundreds of anomalous dimensions with high precision in a wide range of 't Hooft coupling, because:

- In the lack of analytical methods, the strong coupling behaviour of anomalous dimensions can be explored only numerically
- Anomalous dimensions are important input data for numerical Conformal Bootstrap methods to constrain the OPE coefficients of the theory


## Outline

- Introduction : planar AdS/CFT spectral problem
- From integrability to Quantum Spectral Curve eqs. (QSC)
- QSC: a short summary
- Numerical solution of QSC
- Strong coupling results from numerical data

Anomalous dimensions
constraining OPE coefficients

- Conclusion and summary

Type-II B string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ background
$S=\frac{R^{2}}{\alpha} \int d \sigma d \tau G_{\mu \nu}(X) \partial^{a} X(\sigma, \tau) \partial_{a} X(\sigma, \tau)+$ fermions isometry of $\mathrm{AdS}_{5}: \mathrm{SO}(4,2)$ isometry of $\mathrm{S}^{5}: \quad \mathrm{SO}(6)$


N=4 Super Yang-Mills theory with $\operatorname{SU}\left(\mathrm{N}_{\mathrm{c}}\right)$ gauge group

$$
S=\frac{2}{g^{2}} \int d^{4} x \operatorname{Tr}\left\{-\frac{1}{4} F^{2}-\frac{1}{2}(D \phi)^{2}+i \bar{\psi} D \psi+\frac{1}{2}[\phi, \phi]^{2}+\bar{\psi}[\phi, \psi]\right\}
$$

 String coupling

## Dictionary

String energies

anomalous dimensions

- Spectral problem of AdS/CFT

$$
\begin{aligned}
& \longrightarrow \text { conformal symmetry } \\
& \left.\begin{array}{l}
\text { conformal symmetry } \\
\text { rotation of } 6 \text { scalars }
\end{array}\right] \quad \operatorname{PSU}(2,2 \mid 4)
\end{aligned}
$$

## AdS/CFT: planar timit

- Planar limit: $\mathrm{N}_{\mathrm{c}} \rightarrow \infty \quad \mathrm{g}_{\mathrm{s}} \rightarrow 0$ No string-interactions
- Integrability on both sides of the correspondence

String theory:
$1+1$ dim. integrable $\sigma$-model on a cylinder


Fields:
$\frac{\operatorname{PSU}(2,2 \mid 4)}{\mathrm{SO}(4,1) \times \mathrm{SO}(5)}$


## Minimizing the free energy $\frac{\delta}{\delta_{\rho}}(E-T \cdot S)=0$

 $\frac{\delta}{\delta \rho}\left(\sum_{n} \epsilon\left(p_{n}\right)-T \cdot(\right.$ number of microstates $)+\lambda \cdot($ ABA eqs..$\left.)\right)=0$- Complicated set of TBA integral equations

$$
\ln Y_{A}(u)=\epsilon_{A}(u)+K_{A B} \star \ln \left(1+Y_{B}\right) \quad \ln Y_{A}(u) \sim \frac{\rho_{a}^{(h)}(u)}{\rho_{a}(u)}
$$

$$
E_{0}(L)=\sum_{A} \int d u \epsilon_{A}(u) \ln \left(1+Y_{A}(u)\right)
$$

Important property: Y-system equations

$$
Y_{a, s}(u+i / 2) Y_{a, s}(u-i / 2)=\frac{\left(1+Y_{a, s-1}(u)\right)\left(1+Y_{a, s+1}(u)\right)}{\left(1+\frac{1}{Y_{a-1, s}(u)}\right)\left(1+\frac{1}{Y_{a+1, s}(u)}\right)}
$$

## Excited states

- From analytical continuations of the ground state eqs.
- Solutions of the Y-system with specific analytical properties
- AdS/CFT:

- Domain: reflects the $\operatorname{PSU}(2,2 \mid 4)$ symmetry


## Reduction of the \# of variables

- AdS/CFT Y-system is hard to treat
- Find new variables in which the problem is simpler
- $\mathrm{Y} \rightarrow \mathrm{T}: \quad Y_{a, s}=\frac{T_{a, s-1} T_{a, s+1}}{T_{a-1, s} T_{a+1, s}}$
$T_{a, s}(u+i / 2) T_{a, s}(u-i / 2)=T_{a, s-1}(u) T_{a, s+1}(u)+T_{a-1, s}(u) T_{a+1, s}(u)$
- T encodes the global symmetry of the model

Characters of representations belonging to ( $\mathrm{a}, \mathrm{s}$ ) rectangular Young-tablouxs satisfy constant T-system eqs.

- $\mathrm{T} \rightarrow \mathrm{Q}$ : finite \# of variables


## How to imagine $\mathrm{T} \rightarrow \mathrm{Q}$ ?

$$
f(u \pm i n / 2)=f^{\lfloor \pm n]}(u)
$$

- Right-wing:


$$
T_{1, s}^{+} T_{1, s}^{-}=T_{1, s-1} T_{1, s+1}+T_{1,1}^{[s]} T_{1,1}^{[-s]}
$$

$\mathrm{T} \rightarrow \mathrm{Q}$ is similar to solving "a discrete version" of Laplace-equation:

$$
T_{s}^{+} T_{s}^{-}=T_{s-1} T_{s+1} \quad \Longleftrightarrow T_{s}(u)=f_{L}\left(u-i \frac{s}{2}\right) f_{R}\left(u+i \frac{s}{2}\right)
$$

Here:

$$
T_{1, s}(u)=P_{1}\left(u+i \frac{s}{2}\right) P_{2}\left(u-i \frac{s}{2}\right)-P_{1}\left(u-i \frac{s}{2}\right) P_{2}\left(u+i \frac{s}{2}\right)
$$

## Discontinuities

- AdS/CFT: discontinuity relations $\operatorname{disc}(\ln Y)_{n}=\mathcal{F}_{n}(Y)$ $\operatorname{disc} f_{n}(u)=f(u+i n+i 0)-f(u+i n-i 0)$

Branch points: $\quad u= \pm 2 g+i \mathbb{Z}$

$$
g=\frac{\sqrt{\lambda}}{4 \pi}
$$

Y-syst.+disc. rel.+analyticity


TBA eqs.


## Q-system

- T-hook: $2^{8}$ Q-functions $\left.\quad Q_{A \mid I}(u) \begin{array}{c}A=\left\{a_{1}, a_{2}, \ldots . .\right\} \\ I=\left\{i_{1}, i_{2}, \ldots\right\}\end{array}\right\} a, i=1,2,3,4$ $Q_{\ldots, \ldots b \ldots \mid \ldots i j \ldots}=-Q_{\ldots, . . a \ldots \ldots \mid \ldots j j \ldots}=Q_{\ldots . . . a \ldots \mid \ldots j i \ldots}$
- 8 independent: $Q_{A \mid I} Q_{A a b \mid I}=Q_{A a \mid I}^{+} Q_{A b \mid I}^{-}-Q_{A a \mid I}^{-} Q_{A b \mid I}^{+}$

$$
\begin{aligned}
Q_{A \mid I} Q_{A \mid I i j} & =Q_{A \mid I i}^{+} Q_{A \mid I j}^{-}-Q_{A \mid I i}^{-} Q_{A \mid I j}^{+} \\
Q_{A a \mid I} Q_{A \mid I i} & =Q_{A a \mid I i}^{+} Q_{A \mid I}^{-}-Q_{A \mid I}^{+} Q_{A a \mid I i}^{-}
\end{aligned}
$$

## - Symmetries:

Hodge-transformation:
$Q^{A \mid I} \equiv(-1)^{\left|A^{\prime}\right||I|} \epsilon^{A^{\prime} A} \epsilon^{I^{\prime} I} Q_{A^{\prime} \mid I^{\prime}}$

$$
\begin{aligned}
\left\{A^{\prime}\right\} & =\{1,2,3,4\} \backslash\{A\} \\
\left\{I^{\prime}\right\} & =\{1,2,3,4\} \backslash\{I\}
\end{aligned}
$$

H-symmetry:

$$
Q_{A \mid I} \rightarrow \sum_{\substack{|B|=|A| \\|J|=|I|}}\left(H_{b}^{[|A|-|I|]}\right)_{A}^{B}\left(H_{f}^{[|A|-|I|]}\right)_{I}^{J} Q_{B \mid J} \quad H^{+}=H^{-}
$$

Analyticity:

$$
Q^{\mathrm{LHPA}}=H \cdot Q^{\mathrm{UHPA}} \quad H^{+}=H^{-}
$$

## QSC equations 1. <br> Basis of Q-functions:

Gromov, Kazakov, Leurent, Volin '13
$Q_{a \mid \emptyset} \rightarrow \mathbf{P}_{\mathrm{a}}, \mathbf{P a}^{\mathrm{a}}, \mathbf{a}=1, . .4$

$$
Q_{\emptyset \mid i} \rightarrow \mathrm{Q}_{\mathrm{i}}, \mathrm{Q}^{\mathrm{i}}, \quad \mathrm{i}=1, . .4
$$



Systems

$$
g=\frac{\sqrt{\lambda}}{4 \pi}
$$

$$
\mathrm{P} \mu
$$

Q $\omega$

| $\square$ | $=$ |
| :--- | :--- |
| $\square$ | $=$ |
| $\square$ |  |

Branch points of square root type:

$\mu_{a b}$

$$
u= \pm 2 g+i \mathbb{Z}
$$

$f(u) \rightarrow \tilde{f}(u)$

$\omega_{i j}$


## QSC equations 2.

$$
\begin{aligned}
& \mathbf{P}^{a} \mathbf{P}_{a}=0, \quad a=1, \ldots, 4 \\
& \mu_{a b}-\tilde{\mu}_{a b}=\tilde{\mathbf{P}}_{a} \mathbf{P}_{b}-\tilde{\mathbf{P}}_{b} \mathbf{P}_{a}, \\
& \tilde{\mathbf{P}}_{a}=\mu_{a b} \mathbf{P}^{b}, \\
& \mu_{a b}(u)=\mu_{a b}(u+i), \\
& \operatorname{Pf}(\mu) \equiv \mu_{12} \mu_{34}-\mu_{13} \mu_{24}+\mu_{14} \mu_{23}=1 . \\
& \mu_{a b}=-\mu_{b a} \\
& \mathbf{Q}^{i} \mathbf{Q}_{i}=0, \quad i=1, \ldots, 4, \\
& \omega_{i j}-\tilde{\omega}_{i j}=\tilde{\mathbf{Q}}_{i} \mathbf{Q}_{j}-\tilde{\mathbf{Q}}_{j} \mathbf{Q}_{i}, \\
& \tilde{\mathbf{Q}}_{i}=\omega_{i j} \mathbf{Q}^{j}, \\
& \omega_{i j}(u)=\omega_{i j}(u+i), \\
& \operatorname{Pf}(\omega)=1 . \\
& \omega_{i j}=-\omega_{j i} \\
& \mathbf{P}_{a}, \mu_{a b} \text { have no poles! } \\
& \mathbf{Q}_{i}, \omega_{i j} \text { have no poles! }
\end{aligned}
$$

## QSC equations 3.

- Unique solution: analyticity + large u asymptotic

$$
\begin{aligned}
& \mathbf{P}_{a} \sim A_{a} u^{-\tilde{M}_{a}}, \\
& \mathbf{Q}_{i} \sim B_{i} u^{\hat{M}_{i}-1}, \\
& \mathbf{Q}^{i} \sim B^{i} u^{-\hat{M}_{i}} \\
& \mathbf{P}^{a} \sim A^{a} u^{\tilde{M}_{a}-1}, \\
& \mu_{12} \sim u^{\Delta-L}, \mu_{13} \sim u^{\Delta-1}, \text { etc. } \\
& \omega_{i j} \rightarrow \text { cost. } \\
& \hat{M}_{i}=\left\{1+\frac{\Delta-\ell_{1}}{2}, 2+\frac{\Delta+\ell_{1}}{2},-1-\frac{\Delta+\ell_{2}}{2},-\frac{\Delta-\ell_{2}}{2}\right\} \\
& \tilde{M}_{a}=\left\{2-\frac{p}{2}-\frac{3 q_{1}+q_{2}}{4}, 1-\frac{p}{2}+\frac{q_{1}-q_{2}}{4}, \frac{p}{2}+\frac{q_{1}-q_{2}}{4},-1+\frac{p}{2}+\frac{q_{1}+3 q_{2}}{4}\right\} \\
& {\left[\begin{array}{lll}
\ell_{1} \ell_{2} & \underbrace{q_{1}}_{1} p q_{2}
\end{array}\right]} \\
& \text { Lorentz } \operatorname{SO}(6) \text { labels } \\
& \text { spins }
\end{aligned}
$$

- States form multiplets with respect to the full psu(2,2|4) symmetry of the theory
- Multiplets are characterized by their $\mathrm{g}=\mathrm{o}$, quantum numbers:

- All degeneracies are lifted only by quantum corrections


## Numerical solution of QSC ${ }^{15}$ Gromove etal.

- Parametrization:

Zhukovsky-variable: $x+\frac{1}{x}=\frac{u}{g}: \quad \tilde{x}=\frac{1}{x}$


$$
\mathbf{P}_{a}(u)=\sum_{n=0}^{\infty} \frac{c_{a, n}(g)}{x(u)^{\tilde{M}_{a}+n}} \quad \begin{gathered}
\text { short cut version: } \\
|x|>1
\end{gathered}
$$

- Radius of convergence : $\quad R(g)=|x(2 g+i)|$
- At weak coupling:

$$
c_{a, n}(g) \sim g^{|n|}
$$

- If the loop order is fixed only a finite \# of coeffs. contribute


## Numerical solution of QSC 2.

- ${ }^{\text {st }}$ step: $\quad P_{a} \rightarrow Q_{i}, \tilde{Q}_{i} \quad$ through $\mathrm{Q}_{\mathrm{a} \mid \mathrm{i}}$ UHPA

Solve: $\quad \mathcal{Q}_{a \mid i}\left(u+\frac{i}{2}\right)-\mathcal{Q}_{a \mid i}\left(u-\frac{i}{2}\right)=-\mathbf{P}_{a}(u) \mathbf{P}^{b}(u) \mathcal{Q}_{b \mid i}\left(u+\frac{i}{2}\right) \quad a, i \in\{1,2,3,4\}$.
$\left.\begin{array}{ll}\text { Then: } & \mathbf{Q}_{i}(u)=-\mathbf{P}^{a}(u) \mathcal{Q}_{a \mid i}(u+i / 2) \\ & \tilde{\mathbf{Q}}_{i}(u)=-\tilde{\mathbf{P}}^{a}(u) \mathcal{Q}_{a \mid i}(u+i / 2) .\end{array}\right\} \operatorname{Im} u>0$

- $2^{\text {nd }}$ step: close the equations
 by gluing conditions:
$\tilde{\mathbf{Q}}_{i}=G_{i j} \overline{\mathbf{Q}}^{j}$,
$\tilde{\mathbf{Q}}^{i}=G^{i j} \overline{\mathbf{Q}}_{j}$,

$$
G_{i j}=\left(\begin{array}{cccc}
0 & \alpha_{1} & 0 & 0 \\
\alpha_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \beta_{1} \\
0 & 0 & \beta_{2} & 0
\end{array}\right)_{i j} \quad \begin{aligned}
& \alpha_{1}=\bar{\alpha}_{2} \\
& \beta_{1}=\bar{\beta}_{2}
\end{aligned}
$$

## Numerical solution of QSC 3.

- In reality the gluing equations are imposed in a " backward" transformed form: $\mathrm{Q}_{\mathrm{i}} \longrightarrow \mathrm{P}_{\mathrm{a}} \longrightarrow \mathrm{c}_{\mathrm{a}, \mathrm{n}}$

$$
\text { Define a new P: } \quad \mathbf{P}_{a}^{\prime}(u)=-Q_{a \mid k}^{+} G^{k j} \overline{\mathbf{Q}}_{j}(\{c\}, u)
$$

Gluing conditions imply:

$$
\mathbf{P}_{a}^{\prime}(u)=\mathbf{P}_{a}(u)
$$

In numerics the equality of the coefficients are imposed:

$$
c_{a, n}=c_{a, n}^{\prime}(\{c\}) \quad \mathbf{P}_{a}^{\prime}(u)=\sum_{n=0}^{\infty} \frac{c_{a, n}^{\prime}(g)}{x(u)^{\tilde{M}_{a}+n}}
$$

## Success of QSE

QSC: nonlinear Riemann-Hilbert problem for a few unknowns

## Very efficient!

- 11-loop results at weak coupling '18 Marboe,Volin
- Bremstrahlung-function for the quark-anti-quark potential upto $(\theta-\varphi)^{2}$ order '15 Gromov,Levkovich-Mashlyuk
- Small spin expansion upto O(S²) '14 Gromov,L-Mashlyuk, Sizov, Valatka
- NNLO results in the BFKL ( $\mathrm{S} \rightarrow-1$ ) limit ${ }^{14}$ Alfimov,Gromov, Kazakov '15 Gromov,L-Mashlyuk, Sizov
- Strong coupling solution still lacks!


## Numerical work

- We made a publicly available C++ implementation of the numerical algorithm
- We determined $\Delta$ for all 219 states with $\Delta_{0} \leq 6$ in a wide range of the ' $t$ Hooft coupling:
$0 \leq g \leq g_{\text {max }}$ with $g_{\text {max }}=2,5$ depending on the state
I.e: $0 \leq \lambda \leq \lambda_{\text {max }}$ with $\lambda_{\text {max }} \approx 630,4000$

We determined some leading strong coupling expansion coefficients of these $\Delta \mathrm{s}$

We analyzed the results

## Numerical results



## Testing some know formutas

## There are predictions for the minimal anomalous

 dimension for states with quantum numbers:$$
[\mathrm{S}-2, \mathrm{~S}-2,0, \mathrm{~L}-2, \mathrm{o}] \quad \Delta_{\mathrm{o}}=\mathrm{L}+\mathrm{S}-2
$$

- $\Delta$ at strong coupling:

$$
\Delta=\Delta^{(0)} \lambda^{\frac{1}{4}}+\Delta^{(1)} \lambda^{-\frac{1}{4}}+\Delta^{(2)} \lambda^{-\frac{3}{4}}+\Delta^{(3)} \lambda^{-\frac{5}{4}}++\Delta^{(4)} \lambda^{-\frac{7}{4}}+\Delta^{(5)} \lambda^{-\frac{9}{4}}+\ldots
$$

- Analytical predictions: '11 Roiban, Tseytlin, '11 Vallilo, Mazzucato '14 Gromov, L-Maslyuk, Sizov, Valatka

$$
\begin{gathered}
\Delta^{(0)}=\sqrt{2 S}, \quad \Delta^{(1)}=\frac{2 L^{2}+S(3 S-2)}{4 \sqrt{2 S}}, \\
\Delta^{(2)}=\frac{-21 S^{4}+\left(24-96 \zeta_{3}\right) S^{3}+4\left(5 L^{2}-3\right) S^{2}+8 L^{2} S-4 L^{4}}{64 \sqrt{2} S^{3 / 2}},
\end{gathered}
$$

Convincing numerical agreement!

## Numerical results for the Konishi

## $\operatorname{Tr}\left(\Phi_{\mathrm{I}} \Phi_{\mathrm{I}}\right)$ <br> $\mathrm{S}=\mathrm{L}=2$ case

- Good agreement!

| $n$ | $\Delta_{\text {exact }}^{(n)}$ | $\Delta_{\text {fitted }}^{(n)}$ | $\delta_{\text {re }} \Delta^{(n)}$ |
| :---: | :---: | :---: | :---: |
| 0 | 2.0 | 1.999999999999898 | $5.0 \cdot 10^{-14}$ |
| 1 | 2.0 | 1.999999999995831 | $2.8 \cdot 10^{-12}$ |
| 2 | -3.106170709478783 | -3.106170709557684 | $2.5 \cdot 10^{-11}$ |
| 3 | 15.48929958253284 | 15.48929957822780 | $2.8 \cdot 10^{-10}$ |
| 4 | - | -91.97602372540774 | $8.2 \cdot 10^{-9}$ |
| 5 | - | 758.5146133674111 | $1.1 \cdot 10^{-6}$ |

## Numerical results



## Strong coupling analysis of data

- Expectations from string theory, for states with $\left[\begin{array}{llll}\ell_{1} & \ell_{2} & q_{1} & p\end{array} q_{2}\right] \sim 1$

Gubser,Klebanov, Polyakov '98

$$
\Delta \simeq 2 \sqrt{\delta} \lambda^{1 / 4} \quad \delta \text { - string mass level (integer) }
$$

- General expectation:

$$
\begin{aligned}
& \Delta=\Delta_{\mathrm{reg}}+\Delta_{\mathrm{const}} \\
& \Delta_{\mathrm{reg}}=(\delta \sqrt{\lambda})^{1 / 2}\left(2+\sum_{n=1}^{\infty} \frac{d_{n}}{(\delta \sqrt{\lambda})^{n}}\right)
\end{aligned}
$$

- We fitted the data according to this formula


## Determination of $\Delta_{\text {const }}$

- Assuming that the series of the quadratic Casimir:

$$
\begin{aligned}
J^{2}=\frac{1}{2}(\Delta+2)^{2} & -2+\frac{1}{4} \ell_{1}\left(\ell_{1}+2\right)+\frac{1}{4} \ell_{2}\left(\ell_{2}+2\right) \\
& -\frac{1}{4} q_{1}\left(q_{1}+2\right)-\frac{1}{4} q_{2}\left(q_{2}+2\right)-\frac{1}{8}\left(2 p+q_{1}+q_{2}\right)^{2}-\left(2 p+q_{1}+q_{2}\right)
\end{aligned}
$$

- runs in powers of $1 / \sqrt{\lambda}$, implies:

$$
\left.\Delta_{\text {const }}=-2 \quad \text { (state independent }\right)
$$

- which is supported by all of our fitted values.


## Determining $\mathrm{d}_{1}$ -

- At strong coupling string-states can be characterized by flat space limit quantum numbers
- $\mathrm{AdS}_{5} \times \mathrm{S}^{5} \longrightarrow \mathrm{SO}(9) \longrightarrow \mathrm{SO}(4) \times \mathrm{SO}(5)$
- To each such state a Kaluza-Klein tower of SO(6) representations can be assigned :

Bianchi et al. ‘o3

$$
\begin{aligned}
& {[\underbrace{\ell_{1} \ell_{2}}_{\ell_{1}} ; \underbrace{m \mathrm{n}(4)}_{\mathrm{SO}(5)}]=\sum_{r=0}^{m} \sum_{s=0}^{n} \sum_{p=m-r}^{\infty}\left[\ell_{1}, \ell_{2}, r+n-s, p, r+s\right]} \\
& +\sum_{r=0}^{m-1} \sum_{s=0}^{n-1} \sum_{p=m-r-1}^{\infty}[\ell_{1}, \ell_{2}, \underbrace{r+n-s, p, r+s+1]}_{\operatorname{SO}(6)}
\end{aligned}
$$

- Each SYM state can be associated to a KK-tower
- Kaluza-Klein tower structure at $\delta=$ fixed is known:

$$
\begin{aligned}
& \boldsymbol{\delta}=\mathbf{1 :} \quad[00 ; 00] \quad \boldsymbol{\delta}=\mathbf{2}: 2[00 ; 00]+[00 ; 20]+[00 ; 02]+2[11 ; 10]+ \\
& {[22 ; 00]+[20 ; 00]+[02 ; 00]}
\end{aligned}
$$

etc.

- The strong coupling behaviour of the Casimir:

$$
J^{2} \simeq 2 \delta \sqrt{\lambda}+j_{1}
$$

- Numerical data suggests, that $\mathrm{j}_{1}$ is constant within a KK-tower
- This implies the following formula for the next coefficient $\mathrm{d}_{1}$

$$
\begin{aligned}
d_{1}=\frac{p^{2}}{4}+\frac{p}{4}\left(q_{1}+q_{2}+4\right)+\frac{1}{16}[16 & -2 \ell_{1}\left(\ell_{1}+2\right)-2 \ell_{2}\left(\ell_{2}+2\right) \\
& \left.+3 q_{1}\left(q_{1}+4\right)+3 q_{2}\left(q_{2}+4\right)+2 q_{1} q_{2}\right]+\frac{j_{1}}{2}
\end{aligned}
$$

## Restricting some OPE coefficients

- The previous knowledge on strong coupling behaviour of $\Delta \mathrm{s}$, allows one to constrain or in some cases to determine the leading strong coupling coefficients of some structure constants

Hansen '22

- Consider the 4-pt function of: (graviton scattering amplitude)

$$
\mathcal{O}_{2}(\vec{x}, Y) \equiv \operatorname{Tr} \Phi_{I}(\vec{x}) \Phi_{J}(\vec{x}) Y^{I} Y^{J} \quad \text { 20' } \quad 1 / 2-\mathrm{BPS}
$$

$\Phi_{I}$ is a fundamental real scalar
$Y^{I}$ is a polarisation nullvector

- The 4-pt function is a function of cross ratios:
$\left\langle\mathcal{O}_{2}\left(\vec{x}_{1}, Y_{1}\right) \mathcal{O}_{2}\left(\vec{x}_{2}, Y_{2}\right) \mathcal{O}_{2}\left(\vec{x}_{3}, Y_{3}\right) \mathcal{O}_{2}\left(\vec{x}_{4}, Y_{4}\right)\right\rangle=\frac{Y_{12}^{2} Y_{34}^{2}}{x_{12}^{4} x_{34}^{4}} \mathcal{S}(U, V ; \sigma, \tau)$
$U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} \equiv z \bar{z}, \quad V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} \equiv(1-z)(1-\bar{z}) \quad \begin{aligned} & \text { conformal } \\ & \text { cross ratios }\end{aligned} x_{i j} \equiv x_{i}-x_{j}$
$\sigma \equiv \frac{Y_{13} \cdot Y_{24}}{Y_{12} \cdot Y_{34}}, \quad \tau \equiv \frac{Y_{14} \cdot Y_{23}}{Y_{12} \cdot Y_{34}}$
R-symmetry
$Y_{I J} \equiv Y_{I} \cdot Y_{J}$ cross ratios


## - Superconformal symmetry imples:

$$
\mathcal{S}(U, V ; \sigma, \tau)=\underbrace{\mathcal{S}_{\text {free }}(U, V ; \sigma, \tau)}_{\text {explicitly known }}+\underbrace{\Theta(U, V ; \sigma, \tau)}_{\text {explicitly known }} \mathcal{T}(U, V)
$$

Conformal crossing relation:

$$
\mathcal{T}(U, V)=\mathcal{T}(1 / U, V / U)=1 / V^{2} \mathcal{T}(U / V, 1 / V)
$$

Expansion in terms of conformal blocks:
Alday, Hansen Silva ‘22

$$
\mathcal{T}(U, V)=U^{-2} \sum_{T, \ell} \underbrace{C_{T, \ell}^{2}}_{\text {OPE.coeff }} G_{T+4, \ell}(U, V) \quad \text { Twist: } T \equiv \Delta-\ell
$$

Contributing states: $\left[\begin{array}{llll}\ell & \ell & 0 & 0\end{array}\right] \quad$ ] $\quad \ell \quad \ell=0,2,4 \ldots$
Conformal blocks:
Dolan, Osborne ‘o4

$$
\begin{aligned}
& G_{T, \ell}(U, V)=\frac{z \bar{z}}{z-\bar{z}}\left(k_{T+2 \ell}(z) k_{T-2}(\bar{z})-k_{T+2 \ell}(\bar{z}) k_{T-2}(z)\right) \\
& \quad k_{h}(z) \equiv z^{\frac{h}{2}}{ }_{2} F_{1}(h / 2, h / 2, h, z)
\end{aligned}
$$

- Strong coupling structure of OPE coefficients: Alday, Hansen

$$
C^{2}(\lambda)=\frac{\pi^{3}}{2^{12}} \frac{2^{-2 T(\lambda)} T(\lambda)^{6}}{\sin ^{2}\left(\frac{\pi T(\lambda)}{2}\right)} \frac{1}{2^{2 \ell}(\ell+1)} f(\lambda)
$$

- f has the usual expansion:

$$
f(\lambda) \simeq f_{0}+\frac{f_{1}}{\lambda^{1 / 4}}+\frac{f_{2}}{\lambda^{1 / 2}}
$$

The twist at strong coupling:

$$
T(\lambda) \simeq 2 \sqrt{\delta} \lambda^{\frac{1}{4}}-2-\ell+\frac{T_{1}}{\lambda^{1 / 4}} \quad T_{1} \equiv \frac{d_{1}}{\sqrt{\delta}}
$$

The values of $\delta$ and $\mathrm{T}_{1}$ are known from our numerical work for the lowest lying states, which is necessary to restrict the values for the coefficients $f_{0,1,2}$

## Restricting the OPF coefficients

- Comparison of strong coupling string theory results to conformal block expansion led to sums rules along Alday, "Regge-trajectories" defined by the numbers:

$$
t \equiv \delta-\ell / 2
$$

The averages: $\left\langle f_{0}\right\rangle,\left\langle f_{2}\right\rangle,\left\langle f_{1}\right\rangle,\left\langle T_{1} f_{0}\right\rangle$
are available on various Regge-trajectories

- On the 1st Regge-trajectory: $\mathrm{t}=1$, upto $\delta \leq 7$, there is only one state, so average gives the exact values for $f_{0}, f_{1}, f_{2}$ for these special states

On the $2^{\text {nd }}$ Regge-trajectory $\mathrm{t}=2$ with $\delta=2$, there are only 2 states. Thus our knowledge on $\mathrm{T}_{1}$ allows us to determine, the leading coefficients for these states.

- The 2 states on the $2^{\text {nd }}$ Regge-trajectory with $\delta=2$ have the quantum numbers:
$[0,0,0,0, o] \quad \Delta_{0}=\mathrm{L}=4 \quad \mathrm{~B}=\mathrm{o}$
They are degenerate at $\mathbf{g}=\mathbf{0}$, only quantum corrections lift this degeneracy:

$$
\Delta=\Delta_{0}+g^{2}(13 \pm \sqrt{ } 41)+\ldots
$$

From fitting the numerical data at strong coupling:

$$
\begin{array}{cc}
\delta=2 & T_{1 ; 3}=\sqrt{2}, \\
T(\lambda) \simeq 2 \sqrt{\delta} \lambda^{\frac{1}{4}}-2-\ell+\frac{T_{1}}{\lambda^{1 / 4}} & T \equiv \Delta-\ell
\end{array}
$$

$$
\begin{aligned}
\left\langle f_{0}\right\rangle= & \frac{r_{1}(\delta)}{3}\left(2 \delta^{2}+3 \delta-8\right) \\
\left\langle f_{0} T_{1}\right\rangle= & \frac{r_{1}(\delta)}{18 \sqrt{\delta}}\left(18 \delta^{4}+25 \delta^{3}-57 \delta^{2}+50 \delta-72\right) \\
& \text { where: } \quad r_{n}(\delta)=\frac{4^{2-2 \delta} \delta^{2 \delta-2 n-1}(2 \delta-2 n-1)}{\Gamma(\delta) \Gamma\left(\delta-\left\lfloor\frac{n}{2}\right\rfloor\right)}
\end{aligned}
$$

- Applying to our case with $\delta=2$ :

$$
\begin{aligned}
\left\langle f_{0}\right\rangle & =f_{0 ; 3}+f_{0 ; 4}=\frac{1}{4} \\
\left\langle f_{0} T_{1}\right\rangle & =f_{0 ; 3} T_{1 ; 3}+f_{0 ; 4} T_{1 ; 4}=\sqrt{2}
\end{aligned}
$$

Solution: $\quad f_{0 ; 3}=0, \quad f_{0 ; 4}=\frac{1}{4}$

- On other Regge-trajectories there are more operators (unknows), than the number of equations for averages. Thus, we cannot make exact determination of the coeffcients $f_{0,1,2}$.
- However, using their positivity: $\mathrm{f}_{0,1,2} \geq 0$, inequalities giving lower and upper bonds can be derived.


## In a recent paper: <br> J. Julius, N. Sokolova '23

Assuming: j1=const. in a KK-tower, could show that:
$-f_{0}$ is the same for all states within a KK-tower
-they could determine the values for $f_{o}$

- We solved numerically the QSC equations with high precision for all the 219 states with $\Delta_{0} \leq 6$ in a wide range of the 't Hooft coupling.
- We fitted (at least) the first 3 coefficients of the strong coupling series of the $\Delta \mathrm{s}$
- With these data, we could associate the states to specific Kaluza-Klein towers
- We could restrict some OPE coefficients of our states with two rank-2 symmetric traceless $1 / 2$-BPS operators.


## Spin-chain description

- Planar limit: single trace $\rightarrow$ spin chain description
- SUSY protected BPS states: $\operatorname{Tr}(Ф Ф \Phi . . . \Phi)$
- Vacuum: $\operatorname{Tr}(\Phi \Phi \Phi . . . \Phi) \leftrightarrow$ string vacuum


Long operators $\leftrightarrow$ large volume: $\quad$ S-matrix
$\operatorname{psu}(2,2 \mid 4) \quad \Longrightarrow \operatorname{su}(2 \mid 2) \times \operatorname{su}(2 \mid 2)$
$S_{P S U(2,2 \mid 4)}\left(p_{1}, p_{2}\right)=S_{0}^{2}\left(p_{1}, p_{2}\right) S_{S U(2 \mid 2)}\left(p_{1}, p_{2}\right) \times S_{S U(2 \mid 2)}\left(p_{1}, p_{2}\right)$

