Integrable boundary states in AdS/CFT

Tamás Gombor

Contents

1) Introduction to AdS/CFT

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle=\frac{1}{|x-y|^{2 \Delta}}
$$

2) Application of integrability for $2 p t$ functions
Δ : spectrum of an integrable model
3) Defect in AdS/CFT
4) 1 pt functions and integrable boundary states

$$
\langle\mathcal{O}(x)\rangle=\frac{C_{\Delta}}{x_{\perp}^{\Delta}}
$$

$$
C_{\Delta}=\frac{\langle B \mid \Delta\rangle}{\sqrt{\langle\Delta \mid \Delta\rangle}}
$$

Motivation

Two important question in theoritical physics:
Understanding of QFTs
beyond perturbation
Quantization of gravity theory

Gauge/gravity duality or AdS/CFT

Possibilities for check the gauge/gravity conjecture

- Compare measurements to gauge/gravity predictions
- Compare to lattice gauge theory results
- Integrability in AdS/CFT

Integrability is a tool to validate AdS/CFT

$$
A d S_{d+1}: \quad-X_{-1}^{2}-X_{0}^{2}+X_{1}^{2}+\cdots+X_{d}^{2}=-L^{2}
$$

Global coordinates

$$
\begin{aligned}
X_{-1} & =L \cosh \rho \cos \tau \\
X_{0} & =L \cosh \rho \sin \tau \\
X_{i} & =L \sinh \rho \hat{x}_{i}
\end{aligned}
$$

$$
d s^{2}=L^{2}\left(d \rho^{2}-\cosh ^{2} \rho d \tau^{2}+\sinh ^{2} \rho d \Omega_{d-1}^{2}\right)
$$

Poincaré coordinates

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left(d z^{2}-d t^{2}+d x_{i} d x_{i}\right)
$$

$z=0 \quad$ boundary $=$ Minkowsi spacetime

Symmetry: $S O(2, d) \longleftarrow$ Symmetry of $C F T_{d}$

Euclidean $A d S_{d+1} \longrightarrow$ Geodesics:

Particle propagation from $(0, x)$ to $(0, y)$

ε
Regularization: $\quad S=m L \int_{\pi-2 \varepsilon /(x-y)}^{2 \varepsilon /(x-y)} \frac{d \alpha}{\sin \alpha}=2 m \log (\cot ((x-y) / \varepsilon))$

$$
e^{-S}=\frac{\varepsilon^{2 m L}}{(x-y)^{2 m L}}=\left\langle\mathcal{O}^{\text {bare }}(x) \mathcal{O}^{\text {bare }}(y)\right\rangle
$$

$$
z=0
$$

String theory and low energy effective actions

String action: $\quad S=-\frac{1}{4 \pi l_{s}^{2}} \int_{\Sigma} d^{2} \sigma \sqrt{-g} g^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}+$ fermions

$$
\Sigma \text { worldsheet: } \sigma^{\alpha}, g_{\alpha \beta} \quad \text { spacetime: } X^{\mu}(\sigma), \eta_{\mu \nu} \rightarrow(-1,1,1 \ldots)
$$

$$
\begin{aligned}
& \Sigma \text { is a cylinder } \longrightarrow \text { closed string spectrum } \longrightarrow \text { massless spacetime spin } 2 \text { particle }=\text { graviton } \\
& \Sigma \text { is a strip } \longrightarrow \text { open string spectrum } \longrightarrow \text { massless spacetime spin } 1 \text { particle }=\text { photon }
\end{aligned}
$$

Worldsheet is not physical \longrightarrow Diffeo. invariance \longrightarrow Flat world sheet metric

Gauge fixing
Remaining diffeo. \longrightarrow conformal inv. \longrightarrow worldsheet CFT \longrightarrow State/operator map

graviton with spacetime momentum p: $\quad \mathcal{O} \sim \int d^{2} \sigma \partial_{\alpha} X^{\mu} \partial^{\alpha} X^{\nu} e^{i p \cdot X} \zeta_{\mu \nu}$
photon with spacetime momentum p: $\mathcal{O} \sim \int_{\partial \Sigma} d s \partial_{\alpha} X^{\mu} e^{i p \dot{X}} \zeta_{\mu}$
$\begin{array}{r}\text { String theory in curved spacetime: } \\ \text { (sigma model) }\end{array} \quad S=-\frac{1}{4 \pi l_{s}^{2}} \int_{\Sigma} d^{2} \sigma \sqrt{-g} g^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} G_{\mu \nu}(X)+$ fermions
Spacetime metric: $G_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \longrightarrow S=S_{\text {Poly }}+V$
Path integral: $\quad Z=\int \mathcal{D} X \mathcal{D} g e^{-S_{\text {Poly }}-V}=\int \mathcal{D} X \mathcal{D} g e^{-S_{\text {Poly }}}\left(1-V+\frac{1}{2} V^{2}+\ldots\right)$
$V=\frac{1}{4 \pi l_{s}^{2}} \int_{\Sigma} d^{2} \sigma \sqrt{-g} g^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} h_{\mu \nu}(X) \longrightarrow$ graviton vertex operator

$$
h_{\mu \nu}(X)=\int d^{D} p e^{i p \cdot X} \zeta_{\mu \nu}(p)
$$

$\mathcal{O} \sim \int d^{2} \sigma \partial_{\alpha} X^{\mu} \partial^{\alpha} X^{\nu} e^{i p \cdot X} \zeta_{\mu \nu}$

Inserting $\mathrm{V}=$ single graviton state \longrightarrow Inserting $\exp (-\mathrm{V})=$ coherent state of gravitons
Consistent string theory \longrightarrow worldsheet conf. sym. \longleftrightarrow Vanishing beta function

$$
\beta_{\mu \nu}(G)=\mathcal{R}_{\mu \nu}=0 \quad \text { Ricci flat spacetime }
$$

Type IIB: zero mass bosons $h_{\mu \nu}, B_{\mu \nu}, \Phi, C, C_{\mu \nu}, C_{\mu \nu \rho \sigma} \longrightarrow$ four-form
Low energy effective action \longrightarrow Type IIB SUGRA

$$
S \sim \int d^{10} X \sqrt{-G} e^{-2 \Phi}\left(\mathcal{R}-\frac{1}{2}\left|H_{3}\right|^{2}+4 \partial_{\mu} \Phi \partial^{\mu} \Phi+\ldots\right)
$$

Dp-branes: $p+1$ dimensional surfaces:

$$
\begin{array}{rl}
\partial_{\sigma} X^{a}=0 & a=0,1, \ldots p \tag{1,9}\\
X^{I}=\phi^{I} & I=p+1, \ldots 9
\end{array}
$$

$$
\mathrm{SO}(1, p) \times S O(9-p)
$$

Inserting coherent state of photons

$$
S_{b}=\frac{1}{4 \pi l_{s}^{2}} \int_{\partial \Sigma} d \tau \dot{X}^{a} A_{a}(X) \quad A_{a}(X)=\int d^{p+1} k e^{i k \cdot X} \zeta_{a}(k)
$$

Vanishing beta function \longrightarrow DBI action $\longrightarrow S \sim \int d^{p+1} \xi\left(\frac{1}{4} F_{a b} F^{a b}+\frac{1}{2} \partial_{a} \phi^{I} \partial^{a} \phi^{I}+\ldots\right)$ limit

- p+1 dimensional $U(1)$ gauge theory with 9-p scalars

N coincident D -branes: \longrightarrow massless fields $=\mathrm{N} \times \mathrm{N}$ Hermitian matrcies

$$
S \sim \int d^{p+1} \xi \operatorname{Tr}\left(\frac{1}{4} F_{a b} F^{a b}+\frac{1}{2} \mathcal{D}_{a} \phi^{I} \mathcal{D}^{a} \phi^{I}-\frac{1}{4} \sum\left[\phi^{I}, \phi^{J}\right]^{2}+\text { fermions }\right)
$$

$\longrightarrow p+1$ dimensional $U(N)$ YM with 9-p scalars, every field in adjoint rep

Another aspect of p-branes: they can be charges under $p+1$-form point particle: $\int d \tau \dot{X}^{\mu} A_{\mu}=\int_{V_{0}} A_{1} \longrightarrow \int_{V_{p}} C_{p+1}$

Two aspects of N coincident D3-brane in type IIB, when $\quad N \gg 1$

	0	1	2	3	4	5	6	7	8	9
D3	X	X	X	X						

$g_{s} N \ll 1$
Closed and open strings in flat 9+1 dim Minkowski space
open-closed << open-open
Open and closed strings are decoupled Low energy excitations:

> I. Open strings

Low energy effective action: $3+1$ dimensional $U(N)$ YM with 6 scalars + fermions

$$
g_{Y M}^{2}=4 \pi g_{s}
$$

3+1 dim. $\mathcal{N}=4$ Super Yang-Mills
II. Closed strings

Free super-gravitons in flat 9+1 dim. spacetime
$g_{s} N \gg 1 \quad$ D3-branes are charged under the Ramond-Ramond four form C_{4}
Type IIB SUGRA: $\quad G_{\mu \nu}, F_{5}=d C_{4}, e^{\Phi}=g_{s}$ $d s^{2}=H(r)^{-\frac{1}{2}} \eta_{a b} d X^{a} d X^{b}+H(r)^{\frac{1}{2}} d X^{I} d X^{I}$
r is the distance from the branes: $X^{I} X^{I}=r^{2}$

$$
H(r)=1+\frac{L^{4}}{r^{4}}, \quad \frac{L^{4}}{l_{s}^{4}}=4 \pi g_{s} N
$$

$r \ll L \rightarrow d s^{2}=\frac{r^{2}}{L^{2}} \eta_{a b} d X^{a} d X^{b}+\frac{L^{2}}{r^{2}} d r^{2}+L^{2} d \Omega_{5}^{2}$
Low energy excitations: $\quad A d S_{5}$$S^{5}$
I. Closed strings at $r \rightarrow 0$

IIB superstrings on $A d S_{5} \times S^{5}$
II. Closed strings at $r \rightarrow \infty$

Free super-gravitons in flat 9+1 dim. spacetime

Maldacena conjecture: $\mathcal{N}=4$ super Yang-Mills $=$ IIB superstrings on $A d S_{5} \times S^{5}$

$$
g_{Y M}^{2}=4 \pi g_{s} \quad \frac{L^{4}}{l_{s}^{4}}=4 \pi g_{s} N
$$

$\mathcal{N}=4$ SYM generating function: $Z\left[\phi_{0}\right]=\left\langle e^{i \int d^{4} x \phi_{0}^{i}(x) \mathcal{O}_{i}(x)}\right\rangle$

$$
\text { Duality: } \begin{aligned}
& Z\left[\phi_{0}\right]=Z_{\text {string }}\left[\phi^{i} \rightarrow r^{\Delta_{i}} \phi_{0}^{i}\right] \approx e^{i S_{\text {sugra }}\left[\phi^{i} \rightarrow r^{\Delta_{i}} \phi_{0}^{i}\right]} \\
& \lambda \gg 1, N \gg 1
\end{aligned}
$$

Examples:

Two-point functions:

three-point functions:

Wilson loops:

$$
g_{Y M}^{2}=4 \pi g_{s} \quad \frac{L^{4}}{l_{s}^{4}}=4 \pi g_{s} N \quad \longrightarrow \lambda=g_{Y M}^{2} N=\frac{L^{4}}{l_{s}^{4}}
$$

Gauge theory

Fields: $\Psi_{i j}$

Feynman graphs:

$$
\lambda^{M+\varepsilon / 2-1} N^{\chi-\varepsilon / 2} \cdot \text { Feynman integral }
$$

M: \#loops X : Euler character
ε : external lines $\quad \chi=2-2 g-h$
Double expansion: genus(1/N) and loops(λ)

$$
N \gg 1, \lambda \ll 1
$$

Planar limit: $\quad N \rightarrow \infty, \quad \lambda=$ fix $\ll 1$

String theory

$$
\begin{aligned}
S=-\frac{L^{2}}{4 \pi l_{s}^{2}} \int_{\Sigma} d^{2} \sigma \sqrt{-g} & (\ldots) \\
& =-\frac{\sqrt{\lambda}}{4 \pi} \int_{\Sigma} d^{2} \sigma \sqrt{-g}(\ldots)
\end{aligned}
$$

String sigma model with coupling: $1 / \sqrt{\lambda}$
Woldsheet perturbation theory + genus expansion (string perturbation theory)

$$
g_{s} \ll 1, \lambda \gg 1
$$

Free strings: $\quad g_{s} \rightarrow 0, \quad \lambda=$ fix $\gg 1$

Two-point function in the planar limit at weak coupling

$$
\begin{aligned}
& \left\langle\mathcal{O}_{I}(x) \mathcal{O}_{I^{\prime}}(y)\right\rangle=\frac{\delta_{I, I^{\prime}}}{|x-y|^{2 \Delta}}=\frac{\delta_{I, I^{\prime}}}{|x-y|^{2 \Delta_{0}}}(1-2 \gamma \log |x-y|+\ldots) \quad \Delta(\lambda)=\Delta_{0}+\gamma(\lambda) \\
& \mathcal{O}_{I}=\mathcal{F}_{I}^{i_{1} \ldots i_{J}} \operatorname{Tr}\left[\phi_{i_{1}} \ldots \phi_{i_{J}}\right] \longrightarrow \Delta_{0}=J \quad \operatorname{span}\left\{\phi_{i}\right\}=V \quad \text { one site } \\
& \mathcal{F}_{I} \in V^{\otimes J} \quad \text { spin chain with length J } \\
& \left\langle\mathcal{O}_{I}(x) \mathcal{O}_{I^{\prime}}(y)\right\rangle=\frac{1}{|x-y|^{2 \Delta_{0}}}\left(\delta_{I, I^{\prime}}-2 \mathcal{F}_{I} \cdot \Gamma(\lambda) \mathcal{F}_{I^{\prime}} \log |x-y|+\ldots\right) \\
& \mathcal{O}: \perp \cdots \\
& \Gamma(\lambda) \in \operatorname{End} V^{\otimes J} \quad \text { Hamilton operator }
\end{aligned}
$$

one-loop: nearest neighbor interaction
two-loop: next-to-nearest neighbor interaction

Scalar one-loop Hamiltonian:

$$
\Gamma^{(1)} \sim \sum_{k=1}^{J} 2 P_{k, k+1}-K_{k, k+1}
$$

Integrable SO(6) spin chain
Integrability also holds for higher loops and the full spectrum
$\operatorname{PSU}(2,2 \mid 4)$ spin chain

Anomalous dimensions at strong coupling

Single-trace operators \qquad
Global bosonic symmetry: $S O(2,4) \times S O(6) \longrightarrow\left(\Delta, S_{1}, S_{2} \mid J_{12}, J_{34}, J_{56}\right)$

Charges in involution

Perturbative expansion around the point-like string: $(J, 0,0 \mid J, 0,0)$

Gauge theory interpretaion:

Anomalous dimension: $\gamma=\Delta-J=\mathcal{H} \longrightarrow$ Light-cone Hamiltonian
Anomalous dimensions = energy levels of $1+1$ dim QFT with size J
Decompactification limit $J \rightarrow \infty \longrightarrow$ worldsheet S-matrix

String-sigma model \longrightarrow Classical integrability
Assuming quantum integrability

- Factorized S-matrix which is fixed by the symmetry

It agrees with the perturbation theory of string-sigma model.

Gauge theory interpretaion:

All loop S-matrix $\mathbb{S}\left(p_{1}, p_{2}\right)$

Anomalous dimensions at finite coupling

Integrable QFT at finite volume \qquad - Termodynamical Bethe Ansatz

$Q_{I} Q_{I a b} \propto\left|\begin{array}{cc}Q_{I a}^{+} & Q_{I b}^{+} \\ Q_{I a}^{-} & Q_{I b}^{-}\end{array}\right| \quad$ Finite number of Q functions

Surface defects in AdS/CFT

	0	1	2	3	4	5	6	7	8	9
D3	X	X	X	X						
D5	X	X	X		X	X	X			
D7	X	X	X		X	X	X	X	X	

$$
\operatorname{PSU}(2,2 \mid 4) \rightarrow O S p(4 \mid 4)
$$

weak coupling Bosonic subalgebras:

$$
S O(2,4) \rightarrow S O(2,3)
$$

$$
S O(6) \rightarrow S O(4)
$$

$\mathrm{U}(\mathrm{N})$	$\mathrm{U}(\mathrm{N}+\mathrm{k})$
	x_{3}

$$
\phi_{i}(x)=\frac{1}{x_{3}}\left(\begin{array}{cc}
\left(t_{i}\right)_{(k \times k)} & \mathbf{0}_{(k \times N)} \\
\mathbf{0}_{(N \times k)} & \mathbf{0}_{(N \times N)}
\end{array}\right) \quad ; \quad i=1,2,3
$$

$$
\left\langle\mathcal{O}_{\Delta}(x)\right\rangle=\frac{C_{\Delta}}{x_{3}^{\Delta}} \quad \text { tree level } \quad C_{\Delta}=\frac{\left\langle\operatorname{MPS}_{k} \mid \mathcal{F}\right\rangle}{\sqrt{\langle\mathcal{F} \mid \mathcal{F}\rangle}}
$$

\uparrow

$$
\begin{gathered}
\mathcal{O}_{\Delta} \propto \mathcal{F}^{i_{1} \ldots i_{J}} \operatorname{Tr}\left[\phi_{i_{1}} \ldots \phi_{i_{J}}\right] \longrightarrow\left\langle\mathcal{O}_{\Delta}(x)\right\rangle \propto \frac{\mathcal{F}^{i_{1} \ldots i_{J}} \operatorname{Tr}\left[t_{i_{1}} \ldots t_{i_{J}}\right]}{x_{3}^{J}} \\
\left\langle\operatorname{MPS}_{k}\right|=\sum_{i_{1}, \ldots i_{L}}\left\langle i_{1}\right| \otimes \cdots \otimes\left\langle i_{L}\right| \operatorname{Tr}\left[t_{i_{1}} \ldots t_{i_{L}}\right]
\end{gathered}
$$

Strong coupling $\quad k \ll N$

The background is same as before - $A d S_{5} \times S^{5}$ near horizon limit

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left(\eta_{a b} d x^{a} d x^{b}+z^{2}\right)+L^{2} d \Omega_{5}^{2}
$$

D5-brane effective action: DBI+WZ action

$$
x_{3}=\kappa z \quad \kappa=\frac{\pi}{\sqrt{\lambda}} k
$$

One-point function:
$1+1$ dim field theory picture

Other applications of overlaps in AdS/CFT
Determinant operators = giant graviton $\langle\operatorname{det} \bar{Z}(x) \operatorname{det} Z(y)\rangle$

Three-point function

$$
\left\langle\operatorname{det} \bar{Z}\left(x_{1}\right) \operatorname{det} Z\left(x_{2}\right) \mathcal{O}\left(x_{3}\right)\right\rangle
$$

Wilson loops and single trace operators

Factorized overlaps $\frac{\langle\Psi \mid \mathbf{u}\rangle}{\sqrt{\langle\mathbf{u} \mid \mathbf{u}\rangle}} \quad\langle\Psi|$: boundary state $\quad|\mathbf{u}\rangle$: on-shell Bethe state
BA equations:

$$
\stackrel{\stackrel{\rightharpoonup}{u_{1}}}{\stackrel{\rightharpoonup}{u_{2}}} \cdots \stackrel{\bullet}{u_{i}} \cdots \rightarrow \stackrel{\bullet}{u_{N}}
$$

$$
\mathbf{u}=\left\{u_{1}, u_{2}, \ldots, u_{N-1}, u_{N}\right\}
$$

$$
e^{i p\left(u_{k}\right) L} \prod_{l \neq k} S\left(u_{k}-u_{l}\right)=1
$$

Neél state in $X X Z$ model

$$
\begin{gathered}
\langle\Psi|=\langle\uparrow| \otimes\langle\downarrow| \otimes\langle\uparrow| \otimes\langle\downarrow| \otimes \cdots \otimes\langle\uparrow| \otimes\langle\downarrow| \otimes\langle\uparrow| \otimes\langle\downarrow| \\
\mid \mathbf{L} \text { (even) } \\
|\mathbf{u}\rangle \longrightarrow S_{z}=L / 2-N \longrightarrow N=L / 2
\end{gathered}
$$

Non-vanishing overlap \longrightarrow Bethe roots in pair: $\left\{u_{j}\right\}_{j=1}^{N}=\left\{-u_{j}\right\}_{j=1}^{N}$ We assume that N is even $\bullet\left\{u_{j}\right\}_{j=1}^{N}=\left\{u_{j}\right\}_{j=1}^{N / 2} \bigcup\left\{-u_{j}\right\}_{j=1}^{N / 2}$

$$
\frac{\langle\Psi \mid \mathbf{u}\rangle}{\sqrt{\langle\mathbf{u} \mid \mathbf{u}\rangle}}=\prod_{j=1}^{N / 2} \frac{\sqrt{\left(\operatorname { t a n } (u _ { j } + i \eta / 2) \left(\tan \left(u_{j}-i \eta / 2\right)\right.\right.}}{2 \sin \left(2 u_{j}\right)} \sqrt{\frac{\operatorname{det} G_{+}}{\operatorname{det} G_{-}}}
$$

The derivation based on the off-shell overlap formula

Gaudin determinants

$$
\frac{\langle\Psi \mid \mathbf{u}\rangle}{\sqrt{\langle\mathbf{u} \mid \mathbf{u}\rangle}}=\prod_{j=1}^{N / 2} \frac{\sqrt{\left(\operatorname { t a n } (u _ { j } + i \eta / 2) \left(\tan \left(u_{j}-i \eta / 2\right)\right.\right.}}{2 \sin \left(2 u_{j}\right)} \sqrt{\frac{\operatorname{det} G_{+}}{\operatorname{det} G_{-}}}
$$

$$
\begin{gathered}
\exp \left(i \phi_{u_{j}}\right)=-\left(\frac{\sin \left(u_{j}-i \eta / 2\right)}{\sin \left(u_{j}+i \eta / 2\right)}\right)^{L} \prod_{k=1}^{N} \frac{\sin \left(u_{j}-u_{k}+i \eta\right)}{\sin \left(u_{j}-u_{k}-i \eta\right)}=1 \quad \begin{array}{c}
G_{j k}=\partial_{u_{j}} \phi_{u_{k}} \\
\langle\mathbf{u} \mid \mathbf{u}\rangle \sim \operatorname{det} G
\end{array} \\
G_{j k}=\delta_{j k}\left(L K_{\eta / 2}\left(u_{j}\right)-\sum_{l=1}^{N} K_{\eta}\left(u_{j}-u_{l}\right)\right)+K_{\eta}\left(u_{j}-u_{l}\right) \quad K_{\eta}(u)=\frac{\sinh (2 \eta)}{\sin (u+i \eta) \sin (u-i \eta)} \\
\mathbf{u}=\mathbf{u}^{+} \bigcup \mathbf{u}^{-} \quad \partial_{u_{j}^{+}} \phi_{u_{k}^{+}}=\partial_{u_{j}^{-}} \phi_{u_{k}^{-}} \quad \partial_{u_{j}^{+}} \phi_{u_{k}^{-}}=\partial_{u_{j}^{-}} \phi_{u_{k}^{+}} \\
\operatorname{det} G=\left|\begin{array}{cc}
\partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{+}} \\
\partial_{\mathbf{u}^{-}} \phi_{\mathbf{u}^{+}} & \partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{-}} \\
\partial_{\mathbf{u}^{-}} \phi_{\mathbf{u}^{-}}
\end{array}\right|=\left|\begin{array}{cc}
\partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{+}}+\partial_{\mathbf{u}^{-}} \phi_{\mathbf{u}^{+}} \\
\partial_{\mathbf{u}^{-}} \phi_{\mathbf{u}^{+}} & \partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{-}}+\partial_{\mathbf{u}^{-}} \phi_{\mathbf{u}^{-}} \\
\partial_{\mathbf{u}^{-}} \phi_{\mathbf{u}^{-}}
\end{array}\right|= \\
=\left|\begin{array}{cc}
\partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{+}}+\partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{-}} \\
\partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{-}} & \partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{+}}-\partial_{\mathbf{u}^{+}} \phi_{\mathbf{u}^{-}}
\end{array}\right|=\operatorname{det} G_{+} \operatorname{det} G_{-} \\
\left(G_{ \pm}\right)_{j k}=\partial_{u_{j}^{+}} \phi_{u_{k}^{+}} \pm \partial_{u_{j}^{+}} \phi_{u_{k}^{-}}
\end{gathered}
$$

Other known overlaps

$$
\text { Integrability = pair structure } \quad \mathbf{U}=\bigcup_{a} \mathbf{u}^{(a)} \quad \mathbf{U}=\mathbf{U}^{+} \bigcup \mathbf{U}^{-} \quad G_{ \pm}=\partial_{\mathbf{U}+} \phi_{\mathbf{U}} \pm \partial_{\mathbf{U}^{+}} \phi_{\mathbf{U}^{-}}
$$

$$
\begin{gathered}
\frac{\left\langle\Psi_{d} \mid \mathbf{U}\right\rangle}{\sqrt{\langle\mathbf{U} \mid \mathbf{U}\rangle}}=\sum_{k=1}^{d} \prod_{u_{j}^{(a)} \in \mathbf{U}^{+}} h_{k}^{(a)}\left(u_{j}^{(a)}\right) \sqrt{\frac{\operatorname{det} G_{+}}{\operatorname{det} G_{-}}} \\
\mathbf{U}=\bigcup_{a} \mathbf{u}^{(a)} \quad \mathbf{U}=\mathbf{U}^{+} \bigcup \mathbf{U}^{-} \quad G_{ \pm}=\partial_{\mathbf{U}^{+}} \phi_{\mathbf{U}^{+}} \pm \partial_{\mathbf{U}^{+}} \phi_{\mathbf{U}^{-}}
\end{gathered}
$$

- General two-site states for XXZ spin chain
B. Pozsgay '18
- Integrable MPS for $\operatorname{SU}(3)$ spin chain
- Integrable $\mathrm{SO}(3) \times \mathrm{SO}(3)$ symmetric MPS for SO(6) spin chain
- Integrable two-site states for $\operatorname{SU}(3)$ spin chain
L. Piroli, E. Vernier, P. Calabrese, B. Pozsgay '19
M. de Leeuw, C.
M. De Leeuw, C. Kristjansen,
G. Linardopoulos '18


```
Kristjansen, S. Mori '16
Kristjansen, S. Mori '16
``` -
- Integrable SO(5) symmetric MPS for SO(6) spin chain
M. De Leeuw, TG, C. Kristjansen,
G. Linardopoulos, B. Pozsgay '19
- Integrable \(\mathrm{SO}(2) \times \mathrm{SO}(4)\) symmetric two-site state for \(\mathrm{SO}(6)\) spin chain

Physical interpretation of factorized overlaps
\[
\frac{\langle\Psi \mid \mathbf{u}\rangle}{\sqrt{\langle\mathbf{u} \mid \mathbf{u}\rangle}}=\prod_{\prod_{u_{j} \in \mathbf{u}^{+}}} h\left(u_{j}\right) \times \sqrt{\frac{\operatorname{det} G_{+}}{\operatorname{det} G_{-}}}
\]

Bethe states: magnons on a circle

\(\langle\Psi|\) annihilates magnons (boundary in time)

Since the annihilation \(\prod h\left(u_{j}\right) \longrightarrow\) Annihilation amplitude is factorized \({ }_{u_{j} \in \mathbf{u}^{+}}\)only in pairs

Integrability = higher spin conserved charges = trajectories can be shifted

Space reflection:
\[
\Pi Q_{n} \Pi=(-1)^{n} Q_{n}
\]

Integrability condition:
\[
\langle\Psi| Q_{2 n+1}=0 \quad \longrightarrow \quad\langle\Psi| t(u)=\langle\Psi| \Pi t(u) \Pi
\]

\section*{One-point function in the asymptotic limit}
\(|\mathbf{p}\rangle\)
Closed string spectrum
- Asymptotic Bethe Ansatz

Gauge theory interpretation of \(|\mathbf{p}\rangle\)

Boundary state and worldsheet K-matrix
\[
\langle B| \sim \sum_{M=0}^{\infty} \mathbb{K}\left(p_{1}, \ldots, p_{M}\right) \quad \mathbb{K}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \quad p_{1} \quad p_{2} \quad p_{3} \quad p_{4}
\]

Assuming quantum integrability \(\longrightarrow\) Factorized K-matrix which is fixed by the symmetry
All loop K-matrix \(\mathbb{K}(p)\)

Gauge theory interpretaion:
\[
\stackrel{p}{\langle\mathrm{~B}| \mathrm{ZZ} \ldots \mathrm{ZZ} \mathrm{\Phi ZZ} \ldots \mathrm{ZZ} \Psi \mathrm{ZZ} \ldots \mathrm{ZZ}>} \stackrel{-p}{\longrightarrow} \mathbb{K}_{\Phi \Psi}(p)
\]

The K-matrix and the asymptotic overlap was calculated in

\section*{Current status of one-point functions}

Weak coupling

Strong coupling

\section*{Ground state one point} function when \(\lambda \rightarrow \infty\) \(\operatorname{Tr} Z^{J}\)

Asymptotic region

One-point function for the full spectrum
TG, Bajnok '20

For D5 brane tree level overlaps were calculated for various sectors

For D7 brane tree level overlaps in SO(6) sector
M. De Leeuw, TG, C. Kristjansen, G. Linardopoulos, B. Pozsgay '19

Finite size corrections?

One-loop results for ground state
\[
\operatorname{Tr} Z^{J}
\]

\section*{Open questions}
- Integrability at strong coupling? D7 case?
- Strong copling 1pt functions beyong the ground state
- Finite size effects
- Derivation of overlap formulas for nested systems
- Understanding the integrability of boundary states for twisted systems
- Connection between boundary states and separation of variables

\section*{Thank you for your attention!}```

