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Single Particle Models

The idea

Atiyah, Manton and Schroers, “Geometric models of matter”,
Proc. R. Soc. Lond. A 468 (2012): model particles with
4-manifolds.

Static models ⇔ Riemannian 4-manifolds.
Time and dynamics still to be included in the picture.

Conserved quantum numbers ⇔ Topology E.g. electric charge
encoded in the asymptotic topology.
Dynamics ⇔ Geometry E.g. energy related to curvature.

Unconventional approach to Particle Physics, playground of
interesting physical and mathematical ideas. Could eventually
clarify the uneasy relation between Quantum Mechanics and
Geometry.
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Single Particle Models

Some motivation

Classical field theory provides interesting
insight/approximations of some quantum properties.
Particularly relevant are topological solitons: instantons,
monopoles, . . .

Conserved quantum numbers (e.g. baryon number) related to
topological properties (typically degree) of fields having
domain/target which are topologically non-trivial.
E.g. monopoles, Skyrmions.

Idea: substitute maps between non-trivial manifolds by the
manifolds themselves.
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Why 4 dimensions?

4D Physics have often proved useful (or essential) to clarify the
apparently 3D Physics of our world.

Minkowski spacetime and electromagnetism.

Kaluza-Klein construction.

Approximate Skyrmion solutions by taking the holonomy of
4D instantons.

The topology of 4-dimensional manifolds is known to be extremely
rich - much more than in any other dimension, which could help
accommodating the large variety of known particles. We cannot
promise we will never go up in dimensions though!
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Single Particle Models

Asymptotic Structure

Physical empty 3-space is represented by flat R3.

Non-compact Asymptotic circle fibration over R3.

Compact
Embedded 3-surface X where the 4-manifold in-
tersects physical 3-space.

Rotational invariance

SO(3) acts isometrically on the 4-manifold.

Non-compact
The group action asymptotically is a bundle map
covering the usual SO(3) action on R3.

Compact The group action fixes the 3-surface X.
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Single-particle Models — Examples

Charge Particle Notes

Taub-NUT −1 Electron No core structure

Atiyah-Hitchin +1 Proton Core structure: bolt

CP 2 0 Neutron Fubini-Study metric

Some details on Taub-NUT
Non compact: topologically R4.
Asymptotic structure: S3, circle bundle over S2 (Hopf fibration).

ds2 =

(
1 +

1

2r

)(
dr2 + r2dΩ2

)
+

(
1 +

1

2r

)−1(
dψ +

1

2
cos θ dφ

)2

SU(2) isometry generated by the usual Killing vector fields.
Additional U(1) isometry generated by ∂/∂ψ. The fixed point,
r = 0, of this isometry is interpreted as the position of the electron.
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Electrical Charge

Neutral particles: trivial fibration (or compact M).
Electrically charged particles: non-trivial asymptotic fibration.

A non-compact manifold is required to asymptotically approach a
circle fibration over R3. If the asymptotic fibration is oriented and
c1 is its first Chern number, then

Q = −c1.

c1 can be calculated by integrating the field strength F of any
connection defined on the asymptotic U(1)-bundle over the base B
of the fibration,

c1 = − 1

2π

∫
B
F.
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We Need Multi Particle Models

Eventually we would like to be able to study interactions.

Need more than one particle! Introduce multi particle models.
A natural candidate, multi Taub-NUT, is a particular example
of Gravitational Instantons. Therefore, consider the suitability
of Gravitational Instantons as models for particle systems.

Need a notion of energy. We will construct energy functionals
in terms of geometrical quantities defined on our multi
particle models.
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Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

Gravitational Instantons

Hyperkähler 4-manifolds ⇒ Ricci-flat, self-dual.

Can be either compact or non-compact. If non-compact, the
Riemann tensor is required to approach zero at infinity. The
only compact ones are T 4 (the 4-torus) and K3.

Non-compact examples can be constructed using the
Gibbons-Hawking ansatz, G. Gibbons and S. W. Hawking,
“Gravitational Multi-Instantons”, Phys. Lett. B 78 (1978).

The Gibbons-Hawking metric is

ds2 = V
(
dr2 + r2dΩ2

)
+ V −1 (dψ + α)2 ,

V is harmonic and independent of ψ and (locally) dα = ∗3dV .
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Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

Classification of Non-compact Gravitational Instantons

Class Volume growth Example

ALE r4 Eguchi-Hanson
ALF r3 Taub-NUT
ALG ra, 2 ≤ a < 3
ALH ra, a < 2

ALF

Ak. Discovered by S. W. Hawking, “Gravitational Instantons”,
Phys. Lett. A 60 (1977). Metric explicitly known.

Dk. Discovered by A. S. Dancer, “Dihedral Singularities and
Gravitational Instantons”, J. Geom. Phys. 12 (1993). Metric
known only implicitly.
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Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

ALF Ak

Infinite family labelled by the integer k ≥ 0.

Topology
k = 0 C2

k > 0 minimal resolution of C2/Zk+1

Metric

Gibbons-Hawking form

ds2 = V
(
dr2 + r2dΩ2

)
+ V −1 (dψ + α)2

V = 1+ 1
2

∑k+1
i=1 (||p− pi||)−1

NUTs
{pi} k + 1 distinct points in R3. Fixed points of
the U(1) isometry generated by ∂/∂ψ.

A0, also known as Taub-NUT, is the model of the electron.
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Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

Asymptotic topology

k = 0: Hopf fibration.

Large r Base Fibre

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} S2 S1

S3 points with same ratio z2/z1 mapped to the same S2 point.

k > 0: Zk+1 action generated by (z1, z2) 7→e
2π i
k+1 (z1, z2).

z1/z2 invariant ⇒ the asymptotic fibration has the same base, S2.

Ak large r hypersurfaces: U(1)-bundles over S2.
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Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

Ak Charge

In order to compute c1, consider the U(1)-connection

ωl =

{
dψN + (Al)N on UN

dψS + (Al)S on US
,

(Al)N
(Al)S

}
=
l

2
(cos θ ∓ 1) dφ.

A U(1)-bundle over S2 with connection form ωl has c1 = l.

Asymptotic metric: ds2 = V (dr2 + r2dΩ2) + 4V −1 (ωk+1)
2

QAk = −(k + 1).

The value of the charge and the fact the Ak looks like the
model for an electron (A0) close to each NUT suggest to
consider it as a model for a system of k + 1 electrons.
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Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

ALF Dk

Infinite family labelled by the integer k ≥ 0.

Topology

k = 0 retracts onto RP 2

k = 1 retracts onto S2

k = 2 minimal resolution of (R3 × S1)/Z2

k ≥ 3 minimal resolution of C2/D∗k−2

As. Metric

ds2 = V
(
dr2 + r2dΩ2

)
+ V −1 (dψ + α)2

V = 1− 2
||p|| + 1

2

∑k
i=1

(
1

||p−pi|| + 1
||p+pi||

)
Z2 identification (θ, φ, ψ) ∼ (π − θ, φ+ π,−ψ)

It is possible to move a pair of NUTs to the origin without making
the manifold singular or altering its topology. Doing so for k = 1
one obtains the Atiyah-Hitchin manifold, the model of the proton.

Guido Franchetti Geometric Models of Matter



Outline
Introduction

Multi Particle Models
Energy

Conclusions

Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

Moduli Space Interpretation

V ψ ∈
D0 1− 2

||p|| [0, 2π)

AH
1− 1

||p|| [0, 2π)

1− 2
||p|| [0, 4π)

D1 1− 2
||p|| + 1

||p−p1|| + 1
||p+p1|| [0, 2π)

D0: true moduli space of centred charge 2 SU(2) monopoles.
Atiyah-Hitchin: simply connected double cover of D0.
Dk: moduli space of (2, k) centred SU(3) monopoles in the
infinite mass limit of the (0, 1) monopoles. See S. A. Cherkis
and A. Kapustin “Singular monopoles and supersymmetric
gauge theories in three dimensions”, Nucl. Phys. B 525 (1998).
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Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

Asymptotic topology

k ≥ 3: D∗k−2 action generated by

(z1, z2) 7→ e
i π
k−2 (z1, z2),

(z1, z2) 7→ i(z̄2,−z̄1)

The second generator identifies a point on S2 with its antipodal
point. ⇒ Large r hypersurfaces are circle bundles over RP 2.

k = 2: R3×S1

Z2
with Z2 action generated by (x, ψ) 7→ (−x, 2π − ψ).

k = 0, 1 : same as. topology as k = 4, 3 but opposite orientation.

Dk large r hypersurfaces: unoriented circle bundles over RP 2.
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Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

Dk Charge

The leading asymptotic form of the metric can be written
ds2 = V (dr2 + r2dΩ2) + V −1

(
ω2(k−2)

)2
. However the

asymptotic circle bundle is not oriented and it is not possible
to define its first Chern number.
Alternative definition (equivalent for oriented fibrations):
minus the self-intersection number of the base of the
asymptotic fibration. This is equal to the first Chern number
of the U(1) asymptotic fibration of the double cover Dk of
Dk obtained by lifting the Z2 identification. The form ω2(k−2)
is a connection form on Dk, therefore

QDk = −1

2
· 2(k − 2) = 2− k.
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Gravitational Instantons
Charge and Particle Interpretation: Ak
Charge and Particle Interpretation: Dk

Dk Particle Interpretation

V = 1− 2

||p||︸ ︷︷ ︸
asymptotic D0
charge +2

+

k ELECTRONS︷ ︸︸ ︷
1

2

k∑
i=1

(
1

||p− pi||
+

1

||p+ pi||

)
︸ ︷︷ ︸
k pairs of mirror symmetric A0 NUTs

each pair has charge −1

V |pk=0 =

PROTON︷ ︸︸ ︷
1− 1

||p||︸ ︷︷ ︸
asymptotic AH

charge +1

+

k − 1 ELECTRONS︷ ︸︸ ︷
1

2

k−1∑
i=1

(
1

||p− pi||
+

1

||p+ pi||

)
︸ ︷︷ ︸

k − 1 pairs of A0 NUTs
each pair has charge −1

Either a particle of charge +2 and k e−, or a proton and k − 1 e−.
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Gaussian Curvature Energy Functional

Topologically Preferred 2-cycles

Hp (Mk,Z) =


Zk if p = 2

Z if p = 0

0 otherwise

where Mk is either Ak or Dk.

Build generators. We follow A. Sen, “A note
on enhanced gauge symmetries in M- and
string theory”, JHEP 09 (1997).

Take the (Euclidean) line connecting two
NUTs and erect a circle of radius 1/V (r)
at each point of the line.

NUTs are fixed points of the circle action
generated by ∂/∂ψ so the surface is
topologically a 2-sphere.
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Minimal Area

The induced metric is dσ2 = V dr2 + V −1 dψ2.

The area A of the 2-cycle Si, j is

A (Si, j) =

∫ 2π

0
V −1dψ

∫ pj

pi

V dr = 2π ||pi − pj ||,

proportional to the distance between the two NUTs.

This is exact for Ak, approximate for Dk since the metric is
only valid asymptotically.

If we had taken any other curve connecting pi and pj , the
area would have been 2π times the Euclidean length of the
curve, therefore the 2-cycles constructed have minimal area.

Get Coulomb energy by summing the inverse areas of
appropriate 2-cycles.
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First Energy Functional

It is possible to choose basis 2-cycles which intersect according
to the Cartan matrix of the corresponding Lie algebra.

Simple roots All roots

Ak−1 {e1 − e2, . . . , ek−1 − ek} {±(ei − ej)}, i 6= j

Dk {e1−e2, . . . , ek−1−ek, ek−1 +ek} {±(ei ± ej)}, i 6= j

Associate the 2-cycle Si,±j , connecting the NUTs ±pi to the
NUTs ±pj , to the root ei ± ej .
Simple roots are not invariant under the Weyl group, all pairs
of NUTs should play an equal rôle. Therefore, sum π times
the inverse area of the 2-cycles corresponding to all the roots.
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EAk−1
=

k∑
i<j

1

||pi − pj ||

EDk =

k∑
i<j

(
1

||pi − pj ||
+

1

||pi + pj ||

)

EAk−1
is the Coulomb interaction energy of k electrons.

EDk only gives electron-electron interactions.

The construction only involves pairs of NUT, k ≥ 2, so it does
not run into self-energy problems.
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Gaussian Curvature at NUTs

NUTs are geometrically preferred points.

Calculate the Gaussian curvature of the
2-cycle Si, j , i 6= j at the points pi and pj .

The metric is dσ2 = V dx2 + V −1 dψ2

(surface of revolution).

The Gaussian curvature K is independent
of ψ and is given by

K = −1

2

∂2 (V )−1

∂x2
.
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Calculating K at an arbitrary point is very cumbersome.
Instead, rewrite V −1 under a common denominator and take
advantage of the fact that many factors are zero at pi.
For Ak−1, writing di ≡ ||p− pi||, dij ≡ ||pi − pj ||,

K = −1

2

1

(f + g)3

(
(fxxg − fgxx)(f + g)− 2(fx + gx)(fxg − fgx)

)
,

where f =

k∏
l=1

dl, g =
1

2

k∑
l=1

d1 . . . d̂l . . . dk.

In the limit p→ pi,

f → 0, fx → d1i . . . d̂ii . . . dki, fxx → 2 (d1 . . . d̂i . . . dk)x

∣∣∣
pi
,

g → fx
2
, gx →

1

2
(d1 . . . d̂i . . . dk)x

∣∣∣∣
pi

+
1

2

k∑
j=1, j 6=i

d1i . . . d̂ji . . . dki.
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For Ak−1, the Gaussian curvature of the 2-cycle Si, j ,
evaluated at the point pi, is

Ki, j(pi) = 4

1 +
1

2

k∑
l=1,l 6=i

1

||pl − pi||

 .

For Dk, the Gaussian curvature of the 2-cycle Si, j , evaluated
at the point pi, is

Ki, j(pi) = 4

1− 2

||pi||
+

1

2

k∑
l=1, l 6=i

(
1

||pl − pi||
+

1

||pl + pi||

) .
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Second Energy Functional

In both cases, Ki, j(pi) = Ki,l(pi) ∀l 6= i. We can associate the
Gaussian curvature K(pi) to the point pi without reference to the
2-cycle used to calculate it. Defining the energy functional to be
the sum of K(pi)/4 over the NUTs p1, . . . pk we have, for k ≥ 2

EAk−1
= k +

k∑
i<j=1

1

||pi − pj ||
,

EDk = k −
k∑
i=1

2

||pi||
+

k∑
i<j=1

(
1

||pi − pj ||
+

1

||pi + pj ||

)
.
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Comments

The Gaussian energy functional for Ak−1 differs from the
inverse area one only by the addition of a constant term equal
to the number of electrons.

The Gaussian energy functional for Dk has both an
electron-electron part, equal to the inverse of area functional,
and a part corresponding to the Coulomb interactions between
the positively charged particle and the electrons.

If all the NUTs are far from the origin, we can neglect the
terms 1/ ||pi + pj || and EDk reduces to the Coulomb
interaction energy of a particle of charge +2 and k electrons
plus an additive constant equal to the number of electrons.
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Dk Gaussian Energy if pk = 0

Consider the 2-cycles in the limit pk = 0. If all the other
NUTs are far from the origin, the metric still describes
accurately the geometry of the 2-cycles around {pi}, i 6= k.

Calculating the Gaussian energy functional as before, and
dropping the contribute of the NUT at the origin we get

EDk = k−1−
k−1∑
i=1

1

||pi||
+

k−1∑
i<j=1

(
1

||pi − pj ||
+

1

||pi + pj ||

)
.

We expect corrections due to the contribution of the origin to
be related to the rest mass of the positively charged particle.
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Physical Units

So far we have used geometrical units such that the length of the
circles in the asymptotic fibration is 2π. In physical units, chosen
so that this length is 2πre, the Gaussian energy functionals become

EAk−1
= kmec

2 +

k∑
i<j=1

e2

||pi − pj ||
,

EDk = kmec
2 −

k∑
i=1

2e2

||pi||
+

k∑
i<j=1

(
e2

||pi − pj ||
+

e2

||pi + pj ||

)
,

EDk |pk=0 = (k − 1)mec
2 −

k−1∑
i=1

e2

||pi||
+

k−1∑
i<j=1

(
e2

||pi − pj ||
+

e2

||pi + pj ||

)
.
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What Have We Done?

Introduced two infinite families, ALF Ak and Dk Gravitational
Instantons, as candidates for particle systems and computed
their charge. Ak models k + 1 electrons, Dk either a particle
of charge +2 and k electrons, or a proton and k − 1 electrons.

Constructed energy functionals which reproduce the Coulomb
interaction energy of the appropriate particle system and, in
one case, also the rest mass of the electrons. The structures
considered naturally involve couples of particles, so do not
cause any self-energy problem.

Considered the properties of 2-dimensional substructures.
The results obtained suggest that these structures may play
an important rôle in this geometrical approach.
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For the Future

Investigate the exact Dk metric and find what are the energy
corrections if the NUTs are not far from the origin.

Understand the relation between the two different particle
interpretations of Dk – this also requires a better
understanding of the exact metric around the origin.

Multi-baryon systems might need to be modelled by non
self-dual manifolds. This brings in other interesting
candidates, e.g. Euclidean Schwarzschild, Taub-Bolt.

Might want to use a non-compact manifold as a model for the
neutron. Euclidean Schwarzschild is a candidate but it admits
orientation reversing isometries. Also, the SU(2) orbit
structure is very different from that of AH.

Guido Franchetti Geometric Models of Matter



Outline
Introduction

Multi Particle Models
Energy

Conclusions

Thank you very much

for your attention
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