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Motivation: massive nonlinear scalar fields

Oscillating core and extremely small
amplitude radiating tail

o flat background: oscillon
@ Einstein gravity: oscillaton

Adding incoming radiation —
time periodic standing-wave tail

Small parameter: core amplitude e

. . : . a b
— tail amplitude is exponentially small a~ —exp [ ——
€ €

faster than any power law — “beyond-all-orders” effect
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Segur-Kruskal method (1987)
@ extension to the complex plane

@ solve the “inner equations” close to the nearest pole
— numerically
— Borel summation (Pomeau, Ramani and Grammaticos 1988)

@ technically rather complicated calculation

a b\ . . . .
R — exp () is only a leading order result for tail amplitude
€ €

— analytic calculation is only valid for very small € amplitudes

Numerical simulations can be done only for relatively large ¢ when
the tail amplitude « is not extremely small
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— similar (less drastic) results for
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: a b
Expected corrections: « & 7(1 + e+ e+ .. .) exp <—>
€ €
no results for ¢, are known for the scalar field problem

— time-periodic solutions, coupled differential equations for Fourier
components: ¢ = ¢ + ¢1 cos(wt) + ¢ cos(2wt) + ¢3 cos(3wt) ...

Study a time independent system first, where there is also
core and exponentially small tail
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Generalized KdV equation

Stationary Korteweg—de Vries (KdV) equation
with a 4-th derivative term

ezuxxxx + Uy + 3u° —cu=0 J

¢ and € parameters, ¢ is not necessarily very small

— ordinary differential equation for u = u(x)
Can be obtained from the fifth-order KdV equation

looking for stationary solutions moving with speed c to the right,
x = y — ct, and integrating once
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For e = 0 and ¢ > 0 the stationary KdV
equation

U + 3% —cu=0
has the solitary wave (or soliton) solution
u= %sech2 (fx)
the amplitude is always positive
— only elevation waves

KdV equation can be obtained when studying surface water waves
for shallow depth and long wavelength

Long wavelength sinusoidal waves move right with speed ¢; = \/hg
— where h is the average water depth, g is the gravity of Earth

Solitary waves move with higher speed c,, such that ¢ ~ c,p — ¢

— they are supercritical
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KdV equation can also describe waves with surface tension o
(A —B)ux+3u* —cu=0
where B = — is the Bond number
gh?
(p fluid density, h average depth, g gravity of Earth)
— signature of uy, term changes when B > %

— for B > % there are depression solitary waves
with subcritical speed and no oscillating tail

— for B = % a fourth derivative should be added to the equation

We are interested in tails, so we assume B is close to but below %

ezuxxxx + Uy + 3u°  —cu=0 J

How solitons change for small € > 07
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Equation €Uy + Uxx + 3% — cu = 0 remains invariant for the

rescalings 1
%, c=s%, e="-¢
s

— we only need to perform numerical simulations for c =1

u=s%i, x=

0|

Solutions with tail on both sides

5L are necessarily symmetric
il ) Form of the tail:
i a2 . [ kx
3 u=asin|——94
€
0.2
// o1 \\ « is never zero for € > 0
A\LAN AL NSO LN o, H H H .
NN A« linearized equation:

k* — k> —ce2 =0

1
k:\/2 (1+\/1+4ce2) :1+%e2+...

for small € wavelength decreases proportionally to €
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For each € there is a minimal amplitude «,, belonging to phase d,,
— a, determines energy loss and lifetime

— amplitude for any phase § can be obtained as o =

Numerical minimization to get o,
— configurations with several
different 6 must be calculated

There is an asymptotic expansion
Om = Cre+ c5€® 4+ cre’ 4+ coe® + ...
Cn can be calculated to high orders

— minimization can be avoided in
numerical calculations for small ¢

Om
cos(d — 0m)
el am | m |

21 4.8-1072 1.2

272 | 1.53-1073 | 0.749
2-3 | 3.25.-107% | 0.373
274 | 1.94-.10718 | 0.187
275 || 1.27-1073 | 0.0937
276 || 1.17-107% | 0.0469
2=7 | 2.30-1071%9 | 0.0234
278 |1 2.13-10734 | 0.0117
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Numerical method

We look for solutions reflection symmetric at x =0

Match to linearized tail u = asin (& — §) at outer boundary
— two boundary conditions at x = L

Choose some ¢, the amplitude o will come out as a result
Rescale by x = L X to make computational interval 0 < X <1
— expand in even indexed Chebyshev polynomials T,,(X)

Chebyshev polynomial expansion is merely a Fourier cosine series in
disguise (J.P. Boyd's book: Chebyshev and Fourier Spectral Methods)

— define § by X =cosf then T,(X) = cos(nf)
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Two equivalent ways to represent function u by N numbers:

e Fourier (i.e. Chebyshev) components U,
. . m™n
@ values u, at collocation points 0, = ———
2(N—-1)
Transition between the two sets is by matrix multiplication
(or Fast Fourier Transform) without precision loss
— differentiation is by matrix multiplication on Fourier components

— multiplication can be calculated using collocation values

Linear equations can be solved in one step (matrix inversion)

Iterative method is applied for nonlinear equations
— solving equation linearized around current approximation
— usually ~ 15 steps is enough

Error decreases exponentially when increasing the number of
collocation points N
— one-dimensional problem: results may converge to ~ 100 digits
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Central amplitude ~ 1, tail amplitude oo ~ 1072
— to get « for b digits we need a + b digit numbers
Arb — C library for arbitrary-precision floating-point ball arithmetic

@ ball: error of each long number is represented by a machine
precision number (no significant decrease in speed)

ec=a+b — arb.add(ca,b)
@ matrix multiplication or inversion is just a single command

@ used by Mathematica, Maple, SageMath...
CLN - Class Library for Numbers

@ C++ library, easier to write codes — significantly slower

@ no ready matrix operation routines

largest resolution used: N = 5000 collocation points, 100 digits
— running time ~ 12 hours
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Minimal tail solutions

1= Downwards spikes:
xqo® o TR zero crossings in tail
1010 P rrTT
14015 Shape and decay rate of core
c=1 .
< 1x10® 1 seem to be € independent
=
R Cl S S . ) .
1100 s Linearized equation:
e=2 1 5
1x10°% s=2:; | o + U + 32— cu=0
-40 e=2 .
1x10 substitute u = exp(—27yx)
0O 20 40 60 80 100

< 167%€2 +442 —c=0

o (Vi) - (1)

Alternative viewpoint: assume that + is independent of €,
— ¢ depends on € according to ¢ = 472 + 167%€2
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Expansion for the core region

We intend to solve

o + U + 302 —cu=0 c =472 + 167%€2
for small €, where 7 is a constant (independent of €)
— two parameters: (e,¢c) — (€,77) — we get all solutions
— decay rate of the core is ¢ independent

— position of the poles on the complex plane is € independent

o
We look for solution as a formal expansion: u = g Upne?"
n=0

This will not be able to describe the tail u = asin (kx — (5>

€
where k = /1 + 442€2 , since « is exponentially small in €
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To leading order: wug = 2v%sech?(yx) is the KdV soliton

— all u, are n+ 1 degree polynomials in sech?(yx) =

n+1

o
u= Z une®™  where u, =22 Z Unj sech2j(7x)
n=0 j=1
(nlj—=] 1 | 2 | 3 4
0 2 - - -
Un j 1 20 | 30 - -
2 60 —930 930 -
3 —2472 | 21036 | —66216 | 49662

upj can be calculated fast up to n ~ 100 by a Mathematica code
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04

02

-02

— U

Uq€’

Upe

— Uge

— U

contribution of terms in

N
uy = E upe?"
n=0

— o~y — 1
for e = =3

optimal order of truncation
in this case is Nopy = 2

€ expansion is not convergent
it is an asymptotic series

Increasing the number of terms in uy the approximation gets
gradually better until N = Nyp¢, and become worse after

— usually the contribution of the N,y term is the smallest (£1)

— gives a simple rule to decide when to stop summation

€

2—1

2—2

2—3

2—4

2—5

2—6

Nopt

2

5

11

24

50

100 Nopt, ~ 1/€
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Auyy —— Augp

4x10°®

3x10°®
2x10°®

1x10®

Auy
o

-1x10°®
-2x10°®
v

-3x10°8

-4x108
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X

4

Auy = Uy — uy Where
Upm is the minimal tail
numerical solution ,

N
uy = g upe"
n=0

e=2"3, a,=2325-10"8

optimal truncation:
Nopt = 11 (red curve)

this is well inside the core radius x ~ 15

Spectral numerical calculation can be made much more efficient by
calculating first the optimal approximation Un,,,, then solving the

nonlinear differential equation for Au,\,Opt =u-—uy

opt

— function remains very small everywhere, but many oscillations

— still need more than 16 digits

17/33



Asymmetric solutions

e=21® 4

— Un
— uw

— e=215
e=272

6:225

10

-02

~04

-06

Linear analysis would suggest
a solution with no tail on
one side and double tail on
other side

Exponential decay for x > 0
— blow-up at finite x <0

— only the symmetric
solution is valid in the
full —co < x < oo range

For smaller e the singularity
is more distance from the
core

Spectral numerical code with
compactification can be used
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For given € the minimal tail symmetric solution uj, is unique

The right decaying asymmetric solution u_ is unique up to
translations

Au

Plot of the difference

Au=uy—u_

If u_ is shifted to the left
by 0.022, the difference
-0.004 becomes similar to the

=2 sine function
-0.006

Au can be calculated very precisely using the WKB method
(Wentzel-Kramers—Brillouin)
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WKB solution of the linearized problem

Substituting v — v+ w into € Ussorse + U + 3% — cu = 0 and
linearizing:
62WXXXX + Wy +6uw —cw =0
We only use that the background solution u can be approximated
o
by the core expansion u = Z Upe2"
n=0

(can be either up, or u_)

Look for solution in the form w = exp A , where

A_
A:Tl+A0+Ale+A262+...
The result:
w = [Bex OOE Ape” | si B—(S —OOE Ape”
= p n€" | sin ; w 1 n€

n=2 n=
even odd
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o0
k
w = Bexp ZA,,E” sin —X—éw—ZA,,e”

€
n=2 n=1
even odd

B and ¢, arbitrary constants
k= 11822
A1 = 6ytanh(yx) , Ay = 15v2sech?(yx)
Az = 111~3sech?(yx) tanh(yx)
Ay = 53574sech2(vx) [3sech2(fyx) — 2] .
— even indexed A, give corrections to the amplitude
— odd indexed A, give corrections to the phase
— asymptotic expansion

— order of optimal truncation is same as for the core expansion
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w gives very good approximation to the difference of the
symmetric and asymmetric solutions, w =~ u, — u_

— it is easier to calculate the asymmetric solution u_
— then w can be used to get approximation for the
symmetric solution u,, — especially to the tail

Asymmetry of u_ can be characterized by its third-derivative
Usxx at the center x = 0 (where u, = 0)

The WKB result can be used to relate the minimal tail amplitude
to this third derivative:

Om = Yoo € (1 + 572€% 4 3119%¢* 4 134074%6° + .. )

— also an asymptotic expansion
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Complex extension (Segur-Kruskal method, 1987)

ComplexPlot of sech®x
All terms in the core expansion
contain only powers of sech?(yx)

17T
nearest poles are at +=—
2y

ComplexPlot of sin x
blows up exponentially in the
imaginary directions
represents the linear perturbation w
— very small on real axis
— becomes same order as core
near the singularity
Tail frequency and blow-up rate
grow as 1/e
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ST
(z) v =i (dominant singularity) We extend the core

/ expansion

————————————————— @ -- R(g) e
n=0

and the linearized
Outer|region solution w to the
R(z) complex x plane

Introduce a rescaled coordinate g to focus on a region close to the
. : : i
first singularity by x = > + €q

Y

u is very large there, so we define a rescaled function v = €?u

The equation in the inner region becomes

2

2 _
Vgqqq + Vgg +3v° —€“cv =0
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Vaqqq + Vqq + 3v2 —2cv=0
oo
Expand in powers of €, substituting v = Z Vped"
n=0

obtain the n-th order inner equations for the functions v,

Core expansion for real x gives boundary conditions for large |q|
(matched asymptotic expansions)

Inner solutions can be determined by
— Borel summation (Pomeau, Ramani and Grammaticos 1988)
— equivalently: Laplace transform (Grimshaw-Joshi 1995)

Complex extension of the WKB solution w can be used to obtain
the minimal tail amplitude oy,
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The n-th order inner equation should be solved for v,,. Each v,
determines a constant in the tail-amplitude result

€

km
Om = —5 €Xp <_2’ye> (1 - 52’7262 - 547464 - 56’7666 - ) ’

k =+/1+4~2¢2 , ~ decay rate constant of the core
Vo —> K =19.968947 | v, —s Ean

& 5 Corrections to leading order results only

¢4 | 65440681 caICL'llated by Grimshaw-Joshi (1995)

¢ | 474.41383 obtained & =0

& | 4232.4123 Spectral numerical result of Boyd (1995):
£10 | 111053.95 & = 4.985 + 0.05

€12 | 1782157.5 obvious inconsistency, remained unsolved
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log-log vs. log plot of
minimal tail amplitude oy,
as function of €
—ate=2"9=1/512

am = 4.5-10799

Relative difference of n-th
order e-expansion result ag,':)
and numerically obtained a;y,
Ao O~ am

Om
— power law decrease

— numerical results are less
precise for smaller €
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Hammersley-Mazzarino method

0'6‘ — =25 We look for the asymmetric
04! =22 right decaying solution u_
2 e=225 only for 0 < x < o0
x  Rescale variables to make
-20 10 10 20

o2 c=1
_od To agree with Hammersley's
08 notation define y = 3u

Our aim is to calculate the third derivative vy, at the center

Equation to solve: €yox + Y +¥2 —y =0

1 1 1 1
Integrati 2 Yy — =y2 te2_t2 103
ntegrating once: € (y )7 2yXX> + 2yx 2)/ 3)/
Autonomous differential equation, monotonously decreasing y

— we could use y as independent variable
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1 1 1 1
62 (}/x)/xxx - 2)/3)() + 5)/3 = §y2 — §y3

We use z = % as independent variable , where Y is a constant

— define the function f = f(z) by y, = —Y\/f
d"f
dz"

we get a second order differential equation for f(z)

1 2
= (ffz— 4f12> —|—f:zz—§Yz3

— denote z derivatives as f, =

for x — oo we have y = 0 — infinity corresponds to z =0
at x = 0 we have y = y. — center corresponds to z = y./Y

— we want to ensure that Y = y., then the centerisat z=1
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0.15

0.10

0.05

Look for solution as formal power
series

o
f=4~%2° (1 — Z c,,z”)
n=1

02 04 06 038 1.0

~ is the decay constant of the core: 167%€% +442 —1 =0
— appropriate behavior at infinity z =10

The constants ¢, can be calculated using a recurrence relation
— all determined uniquely by ¢

With the appropriate choice of ¢; the centerisat z=1

Hammersley and Mazzarino (1989) showed that the series for f is
convergent, and its convergence radius is exactly 1
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Third derivative y,. at the center is given by f, at z = 1, which
also can be determined as a limit of a series

Extremely slow convergence, but he limit can be very precisely
calculated using high order Richardson extrapolation
— this requires several digits of precision floating point calculations

Solution of the differential equation is reduced to the summation
of a convergent series — “exact solution”

Calculate the first ~ 1000 coefficients ¢, to ~ 1000 digits precision,
then use the last ~ 500 terms for Richardson extrapolation
— can get ~ 100 digits precision for

The WKB method connects the tail amplitude «a, of the
symmetric solution to the central y,, of the asymmetric solution
— we get e-expansion result for

31/33



Vi

10—10000
107
107
107

107

22 o4 o6 58 oM 512 514

Ay)()()(

10710
102
10°%
107
10°%0
10°%

—0

— 4
— 6
— 8
— 10
— 12

€

22 24 26 o8 W0 o2 o

Plot of the third derivative
Yxxx at the center x =0
as function of €

—ate=2"1=1/32768
Yxxx = 9.3. 10_44684

Relative difference of n-th
order e-expansion result yg('))(
and yy«x obtained by the
Hammersley method

}/>(<>,<7))< — Yxoxx
A.)/XXX -

.y XXX

— power law decrease
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Conclusions and things to do

How to calculate minimal tail-amplitude?
For smallest € values

K km
am = —5 exp <—) (1— &% — &*e — 61% —..)
€ 2ve

known up to £1o , relative error ~ !4

Moderate € values: Hammersley formalism
Uxxx 1S €asy to calculate to hundreds of digits
but WKB solves linearized problem — error is ~ a2,
—if am = 107" then we can get n digits precision

1>¢€>0.1: spectral numerical method

we match to linearized tail — error is also ~ a2

m

Scalar field oscillons...
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