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Péter Forgács and Muneeb Mushtaq

1/33



Motivation: massive nonlinear scalar fields

Oscillating core and extremely small
amplitude radiating tail

flat background: oscillon

Einstein gravity: oscillaton

Adding incoming radiation −→
time periodic standing-wave tail

Small parameter: core amplitude ε

−→ tail amplitude is exponentially small α ≈ a

εk
exp

(
−b

ε

)
faster than any power law – “beyond-all-orders” effect
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Segur-Kruskal method (1987)

extension to the complex plane

solve the “inner equations” close to the nearest pole
– numerically
– Borel summation (Pomeau, Ramani and Grammaticos 1988)

technically rather complicated calculation

α ≈ a

εk
exp

(
−b

ε

)
is only a leading order result for tail amplitude

−→ analytic calculation is only valid for very small ε amplitudes

Numerical simulations can be done only for relatively large ε when
the tail amplitude α is not extremely small
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ε expansion – this plot is for gravitational

oscillatons
– at least factor 20 difference

– similar (less drastic) results for
flat-space oscillons

Expected corrections: α ≈ a

εk
(1 + c1ε+ c2ε

2 + . . .) exp

(
−b

ε

)
no results for cn are known for the scalar field problem

– time-periodic solutions, coupled differential equations for Fourier
components: φ = φ0 + φ1 cos(ωt) + φ2 cos(2ωt) + φ3 cos(3ωt) . . .

Study a time independent system first, where there is also
core and exponentially small tail
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Generalized KdV equation

Stationary Korteweg–de Vries (KdV) equation
with a 4-th derivative term

ε2uxxxx + uxx + 3u2 − cu = 0

c and ε parameters, ε is not necessarily very small

– ordinary differential equation for u ≡ u(x)

Can be obtained from the fifth-order KdV equation

ε2uyyyyy + uyyy + 6uuy + ut = 0

looking for stationary solutions moving with speed c to the right,
x = y − ct, and integrating once
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For ε = 0 and c > 0 the stationary KdV
equation

uxx + 3u2 − cu = 0

has the solitary wave (or soliton) solution

u =
c

2
sech2

(√
c

2
x

)
the amplitude is always positive
−→ only elevation waves

KdV equation can be obtained when studying surface water waves
for shallow depth and long wavelength

Long wavelength sinusoidal waves move right with speed cs =
√
hg

– where h is the average water depth, g is the gravity of Earth

Solitary waves move with higher speed cph, such that c ∼ cph − cs
– they are supercritical
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KdV equation can also describe waves with surface tension σ(
1
3 − B

)
uxx + 3u2 − cu = 0

where B =
σ

ρgh2
is the Bond number

(ρ fluid density, h average depth, g gravity of Earth)

– signature of uxx term changes when B > 1
3

– for B > 1
3 there are depression solitary waves

with subcritical speed and no oscillating tail

– for B ≈ 1
3 a fourth derivative should be added to the equation

We are interested in tails, so we assume B is close to but below 1
3

ε2uxxxx + uxx + 3u2 − cu = 0

How solitons change for small ε > 0?
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Equation ε2uxxxx + uxx + 3u2 − cu = 0 remains invariant for the
rescalings

u = s2ũ , x =
1

s
x̃ , c = s2c̃ , ε =

1

s
ε̃

−→ we only need to perform numerical simulations for c = 1
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Solutions with tail on both sides
are necessarily symmetric

Form of the tail:

u = α sin

(
kx

ε
− δ
)

α is never zero for ε > 0

linearized equation:
k4 − k2 − cε2 = 0

k =

√
1

2

(
1 +

√
1 + 4cε2

)
= 1 +

c

2
ε2 + . . .

for small ε wavelength decreases proportionally to ε
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For each ε there is a minimal amplitude αm belonging to phase δm
– αm determines energy loss and lifetime

– amplitude for any phase δ can be obtained as α =
αm

cos(δ − δm)

Numerical minimization to get αm

– configurations with several
different δ must be calculated

There is an asymptotic expansion

δm = c1ε+ c5ε
5 + c7ε

7 + c9ε
9 + . . .

cn can be calculated to high orders

– minimization can be avoided in
numerical calculations for small ε

ε αm δm

2−1 4.8 · 10−2 1.2

2−2 1.53 · 10−3 0.749

2−3 3.25 · 10−8 0.373

2−4 1.94 · 10−18 0.187

2−5 1.27 · 10−39 0.0937

2−6 1.17 · 10−82 0.0469

2−7 2.30 · 10−169 0.0234

2−8 2.13 · 10−343 0.0117
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Numerical method

We look for solutions reflection symmetric at x = 0

Match to linearized tail u = α sin
(
kx
ε − δ

)
at outer boundary

– two boundary conditions at x = L

Choose some δ, the amplitude α will come out as a result

Rescale by x = L x̃ to make computational interval 0 ≤ x̃ ≤ 1

– expand in even indexed Chebyshev polynomials T2n(x̃)

Chebyshev polynomial expansion is merely a Fourier cosine series in
disguise (J.P. Boyd’s book: Chebyshev and Fourier Spectral Methods)

– define θ by x̃ = cos θ then Tn(x̃) = cos(nθ)
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Two equivalent ways to represent function u by N numbers:

Fourier (i.e. Chebyshev) components Un

values un at collocation points θn =
πn

2(N − 1)

Transition between the two sets is by matrix multiplication
(or Fast Fourier Transform) without precision loss

– differentiation is by matrix multiplication on Fourier components
– multiplication can be calculated using collocation values

Linear equations can be solved in one step (matrix inversion)

Iterative method is applied for nonlinear equations
– solving equation linearized around current approximation
– usually ∼ 15 steps is enough

Error decreases exponentially when increasing the number of
collocation points N
– one-dimensional problem: results may converge to ∼ 100 digits
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Central amplitude ∼ 1, tail amplitude α ∼ 10−a

– to get α for b digits we need a + b digit numbers

Arb – C library for arbitrary-precision floating-point ball arithmetic

ball: error of each long number is represented by a machine
precision number (no significant decrease in speed)

c = a + b −→ arb add(c, a,b)

matrix multiplication or inversion is just a single command

used by Mathematica, Maple, SageMath...

CLN – Class Library for Numbers

C++ library, easier to write codes – significantly slower

no ready matrix operation routines

largest resolution used: N = 5000 collocation points, 100 digits
– running time ∼ 12 hours
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Minimal tail solutions
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Downwards spikes:
zero crossings in tail

Shape and decay rate of core
seem to be ε independent

Linearized equation:
ε2uxxxx + uxx +��HH3u2 − cu = 0

substitute u = exp(−2γx)

16γ4ε2 + 4γ2 − c = 0

γ =

√
1

8ε2

(
−1 +

√
1 + 4cε2

)
=

√
c

2

(
1− c

2
ε2 + . . .

)
Alternative viewpoint: assume that γ is independent of ε ,
−→ c depends on ε according to c = 4γ2 + 16γ4ε2
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Expansion for the core region

We intend to solve

ε2uxxxx + uxx + 3u2 − cu = 0 , c = 4γ2 + 16γ4ε2

for small ε, where γ is a constant (independent of ε)

– two parameters: (ε, c) −→ (ε, γ) – we get all solutions

– decay rate of the core is ε independent

– position of the poles on the complex plane is ε independent

We look for solution as a formal expansion: u =
∞∑
n=0

unε
2n

This will not be able to describe the tail u = α sin

(
kx

ε
− δ
)

where k =
√

1 + 4γ2ε2 , since α is exponentially small in ε
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To leading order: u0 = 2γ2sech2(γx) is the KdV soliton

– all un are n + 1 degree polynomials in sech2(γx) =
1

cosh2(γx)

u =
∞∑
n=0

unε
2n where un = γ2n+2

n+1∑
j=1

un,j sech
2j(γx)

un,j

n ↓ j → 1 2 3 4

0 2 - - -
1 −20 30 - -
2 60 −930 930 -
3 −2472 21036 −66216 49662

un,j can be calculated fast up to n ≈ 100 by a Mathematica code
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2n

u0
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u2ϵ
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u3ϵ
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u4ϵ
8

contribution of terms in

uN =
N∑

n=0

unε
2n

for ε = γ = 1
2

optimal order of truncation
in this case is Nopt = 2

ε expansion is not convergent
it is an asymptotic series

Increasing the number of terms in uN the approximation gets
gradually better until N = Nopt, and become worse after

– usually the contribution of the Nopt term is the smallest (±1)

– gives a simple rule to decide when to stop summation

ε 2−1 2−2 2−3 2−4 2−5 2−6

Nopt 2 5 11 24 50 100
Nopt ∼ 1/ε
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∆uN = um − uN where

um is the minimal tail
numerical solution ,

uN =
N∑

n=0

unε
2n

ε = 2−3 , αm = 3.25 · 10−8

optimal truncation:
Nopt = 11 (red curve)

this is well inside the core radius x ∼ 15

Spectral numerical calculation can be made much more efficient by
calculating first the optimal approximation uNopt

, then solving the
nonlinear differential equation for ∆uNopt

= u − uNopt

– function remains very small everywhere, but many oscillations

– still need more than 16 digits
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Asymmetric solutions

um

u-
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Linear analysis would suggest
a solution with no tail on
one side and double tail on
other side

Exponential decay for x > 0
−→ blow-up at finite x < 0

– only the symmetric
solution is valid in the
full −∞ < x <∞ range

For smaller ε the singularity
is more distance from the
core

Spectral numerical code with
compactification can be used

18/33



For given ε the minimal tail symmetric solution um is unique

The right decaying asymmetric solution u− is unique up to
translations

noshift

shifted

2 4 6 8 10
x

-0.006

-0.004

-0.002

0.002

Δu

ϵ = 2
-2

Plot of the difference

∆u = um − u−

If u− is shifted to the left
by 0.022, the difference
becomes similar to the
sine function

∆u can be calculated very precisely using the WKB method
(Wentzel–Kramers–Brillouin)
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WKB solution of the linearized problem

Substituting u → u + w into ε2uxxxx + uxx + 3u2 − cu = 0 and
linearizing:

ε2wxxxx + wxx + 6u w − cw = 0

We only use that the background solution u can be approximated

by the core expansion u =
∞∑
n=0

unε
2n (can be either um or u−)

Look for solution in the form w = expA , where

A =
A−1

ε
+ A0 + A1ε+ A2ε

2 + . . .

The result:

w = β exp

 ∞∑
n=2
even

Anε
n

 sin

kx

ε
− δw −

∞∑
n=1
odd

Anε
n


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w = β exp

 ∞∑
n=2
even

Anε
n

 sin

kx

ε
− δw −

∞∑
n=1
odd

Anε
n


β and δw arbitrary constants

k =
√

1 + 4γ2ε2

A1 = 6γ tanh(γx) , A2 = 15γ2sech2(γx) ,

A3 = 111γ3sech2(γx) tanh(γx) ,

A4 = 525
2 γ4sech2(γx)

[
3sech2(γx)− 2

]
, . . .

– even indexed An give corrections to the amplitude

– odd indexed An give corrections to the phase

– asymptotic expansion

– order of optimal truncation is same as for the core expansion
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w gives very good approximation to the difference of the
symmetric and asymmetric solutions, w ≈ um − u−
– it is easier to calculate the asymmetric solution u−
– then w can be used to get approximation for the

symmetric solution um – especially to the tail

Asymmetry of u− can be characterized by its third-derivative
uxxx at the center x = 0 (where ux = 0)

The WKB result can be used to relate the minimal tail amplitude
to this third derivative:

αm = yxxx ε
2
(
1 + 5γ2ε2 + 311γ4ε4 + 13407γ6ε6 + . . .

)
– also an asymptotic expansion
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Complex extension (Segur-Kruskal method, 1987)
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∞ ComplexPlot of sech2x
All terms in the core expansion

contain only powers of sech2(γx)

nearest poles are at ± iπ
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ComplexPlot of sin x
blows up exponentially in the

imaginary directions
represents the linear perturbation w
– very small on real axis
– becomes same order as core

near the singularity
Tail frequency and blow-up rate
grow as 1/ε
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We extend the core
expansion

u =
∞∑
n=0

unε
2n

and the linearized
solution w to the
complex x plane

Introduce a rescaled coordinate q to focus on a region close to the

first singularity by x =
iπ

2γ
+ εq

u is very large there, so we define a rescaled function v = ε2u

The equation in the inner region becomes

vqqqq + vqq + 3v2 − ε2c v = 0
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vqqqq + vqq + 3v2 − ε2c v = 0

Expand in powers of ε, substituting v =
∞∑
n=0

vnε
2n

obtain the n-th order inner equations for the functions vn

Core expansion for real x gives boundary conditions for large |q|
(matched asymptotic expansions)

Inner solutions can be determined by

– Borel summation (Pomeau, Ramani and Grammaticos 1988)

– equivalently: Laplace transform (Grimshaw-Joshi 1995)

Complex extension of the WKB solution w can be used to obtain
the minimal tail amplitude αm
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The n-th order inner equation should be solved for vn. Each vn
determines a constant in the tail-amplitude result

αm =
πK

ε2
exp

(
− kπ

2γε

)(
1− ξ2γ

2ε2 − ξ4γ
4ε4 − ξ6γ

6ε6 − . . .
)

k =
√

1 + 4γ2ε2 , γ decay rate constant of the core

v0 −→ K = 19.968947 , vn −→ ξ2n

ξ2 5

ξ4 6.5440681

ξ6 474.41383

ξ8 4232.4123

ξ10 111053.95

ξ12 1782157.5

Corrections to leading order results only
calculated by Grimshaw-Joshi (1995)
obtained ξ2 = 0

Spectral numerical result of Boyd (1995):
ξ2 = 4.985± 0.05

obvious inconsistency, remained unsolved

26/33



2
-2

2
-3

2
-4

2
-5

2
-6

2
-7

2
-8

2
-9

ϵ10
-2

10
-5

10
-10

10
-20

10
-50

10
-100

10
-200

10
-500

αm

2
-2

2
-3

2
-4

2
-5

2
-6

2
-7

2
-8

2
-9

ϵ

1

10
-5

10
-10

10
-15

10
-20

10
-25

Δα

0

2

4

6

8

10

12

log-log vs. log plot of
minimal tail amplitude αm

as function of ε

– at ε = 2−9 = 1/512

αm = 4.5 · 10−692

Relative difference of n-th
order ε-expansion result α

(n)
m

and numerically obtained αm

∆α =
α

(n)
m − αm

αm

– power law decrease

– numerical results are less
precise for smaller ε
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Hammersley-Mazzarino method
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We look for the asymmetric
right decaying solution u−
only for 0 ≤ x <∞

Rescale variables to make
c = 1

To agree with Hammersley’s
notation define y = 3u

Our aim is to calculate the third derivative uxxx at the center

Equation to solve: ε2yxxxx + yxx + y2 − y = 0

Integrating once: ε2

(
yxyxxx −

1

2
y2
xx

)
+

1

2
y2
x =

1

2
y2 − 1

3
y3

Autonomous differential equation, monotonously decreasing y
−→ we could use y as independent variable
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ε2

(
yxyxxx −

1

2
y2
xx

)
+

1

2
y2
x =

1

2
y2 − 1

3
y3

We use z =
y

Y
as independent variable , where Y is a constant

– define the function f ≡ f (z) by yx = −Y
√
f

– denote z derivatives as fn =
dnf

dzn

we get a second order differential equation for f (z)

ε2

(
f f2 −

1

4
f 2
1

)
+ f = z2 − 2

3
Yz3

for x →∞ we have y = 0 −→ infinity corresponds to z = 0

at x = 0 we have y ≡ yc −→ center corresponds to z = yc/Y

– we want to ensure that Y = yc , then the center is at z = 1
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Look for solution as formal power
series

f = 4γ2z2

(
1−

∞∑
n=1

cnz
n

)

γ is the decay constant of the core: 16γ4ε2 + 4γ2 − 1 = 0
−→ appropriate behavior at infinity z = 0

The constants cn can be calculated using a recurrence relation
– all determined uniquely by c1

With the appropriate choice of c1 the center is at z = 1

Hammersley and Mazzarino (1989) showed that the series for f is
convergent, and its convergence radius is exactly 1
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Third derivative yxxx at the center is given by f2 at z = 1, which
also can be determined as a limit of a series

Extremely slow convergence, but he limit can be very precisely
calculated using high order Richardson extrapolation
– this requires several digits of precision floating point calculations

Solution of the differential equation is reduced to the summation
of a convergent series −→ “exact solution”

Calculate the first ∼ 1000 coefficients cn to ∼ 1000 digits precision,
then use the last ∼ 500 terms for Richardson extrapolation
– can get ∼ 100 digits precision for yxxx

The WKB method connects the tail amplitude αm of the
symmetric solution to the central yxxx of the asymmetric solution
– we get ε-expansion result for yxxx
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Plot of the third derivative
yxxx at the center x = 0
as function of ε

– at ε = 2−15 = 1/32768

yxxx = 9.3 · 10−44684

Relative difference of n-th
order ε-expansion result y

(n)
xxx

and yxxx obtained by the
Hammersley method

∆yxxx =
y

(n)
xxx − yxxx
yxxx

– power law decrease
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Conclusions and things to do

How to calculate minimal tail-amplitude?

For smallest ε values

αm =
πK

ε2
exp

(
− kπ

2γε

)(
1− ξ2γ

2ε2 − ξ4γ
4ε4 − ξ6γ

6ε6 − . . .
)

known up to ξ12 , relative error ∼ ε14

Moderate ε values: Hammersley formalism
uxxx is easy to calculate to hundreds of digits
but WKB solves linearized problem −→ error is ∼ α2

m

– if αm ≈ 10−n then we can get n digits precision

1 > ε > 0.1 : spectral numerical method
we match to linearized tail −→ error is also ∼ α2

m

Scalar field oscillons...
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