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Introduction

o QCD Lagrangian:

1 _ /.
L= _ZG:VGWa + gi (in*(D);j — mdj;) qj
— SU(3) gauge symmetry

— UL(Nf) x Ur(Nf) global (approx.) chiral symmetry
— anomalous breaking of Ux(1) axial symmetry

@ At low temperatures: spontaneous breaking
SUL(Nf) X SUR(Nf) — SU\/(Nf)
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Introduction

o QCD Lagrangian:

1 _ /.
L= _ZG:VGWa + gi (in*(D);j — mdj;) qj
— SU(3) gauge symmetry

— UL(Nf) x Ur(Nf) global (approx.) chiral symmetry
— anomalous breaking of Ux(1) axial symmetry

@ At low temperatures: spontaneous breaking
SUL(Nf) X SUR(Nf) — SU\/(Nf)

@ Ginzburg-Landau paradigm for second order
(or weakly first order) transitions:

i.) there exists a local order parameter ® near the transition
ii.) the free energy can be expanded in terms of ¢
iii.) structure of the free energy +— symmetries
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Ginzburg—Landau analysis of the chiral transition

@ GL theory for the chiral transition:
— gauge degrees of freedom are integrated out
— the emerging order parameter (®) is a N x Nf matrix
corresponding to G| qk
— chiral transformation: ® — LORT

@ The most general free energy functional (no anomaly):

r= / [ m? Tt (®10) + g1 (Tr (<I>T<I>))2 + g Tr (dTodTd) + ...
+Tr (9;019;0) + ]

@ Ua(1) anomaly: Kobayashi-Maskawa—'t Hooft determinant
— a(det dT + det ®)
@ Free energy is non-analytic at the critical point

— at T¢ long wavelength fluctuations are important
— the UV free energy is analytic, expansion justified
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Ginzburg—Landau analysis of the chiral transition

o Pisarski & Wilczek analysis of the Ginzburg—Landau theory :

— one-loop calculation of the 5 functions (no anomaly)
— counterterms for g1, go:

081,082 ~ ><><

@ Results (e-expansion, € =4 — d):

NZ+4 , Nf 3g3
/Bgl = —€g1+ 42 81+ pglg? + 272
3 N¢
Bg, = —€g2+ ﬁgl@ + ﬁgg

@ No infrared stable fixed point at T¢ if Nf > V3
—= 2nd order transition cannot occur!

@ Inclusion of the anomaly: might be 2nd order for Ny = 2
[O(4) exponents]
'R. D. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984)

Gergely Fejés Order of the chiral phase transition for N flavors




Ginzburg—Landau analysis of the chiral transition

Columbia plot:
€ expansion with axial anomaly

second order 1st
O4) order
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1st order
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Ginzburg—Landau analysis of the chiral transition

Columbia plot:
€ expansion w/o axial anomaly
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order
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1st order
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Ginzburg—Landau analysis of the chiral transition

@ Recent lattice QCD result (unimproved staggered fermions):
—> chiral transition is of second order for all Nf up to the
conformal window?

Ny =2

0O(4)

® Physical point

2]
7

%‘\

N =1

Crossover

0 May,d

2F. Cuteri, O. Philipsen, and A. Sciarra, JHEP 11, 141 (2021).
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Ginzburg—Landau analysis of the chiral transition

o Lattice QCD result with highly improved staggered fermions
(Nf = 3)3:
— no direct evidence of a first order transition for
80 MeV < m, < 140 MeV
e Lattice QCD with Mobius domain wall fermions (Nf = 3)*:
— critical quark mass mg it S 4 MeV
e Dyson-Schwinger approach®:
—> absense of a first order transition for Ny = 3

@ Non-perturbative conformal bootstrap approach®:
— the transition can be of second order for N = 3

Contradiction: where is the corresponding IR fixed point?

3L. Dini et al., Phys. Rev. D105, 034510 (2022)

%Y. Zhang et al., arXiv:2401.05066

®J. Bernhardt and C.-S. Fischer, Phys. Rev. D108,114018 (2023)
®S. R. Kousvos and A. Stergiou, SciPost Phys. 15, 075 (2023)
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Ginzburg—Landau analysis of the chiral transition

@ Potential problems with the Pisarski & Wilczek analysis:

— it uses the field theoretical RG

= [ functions are obtained from UV divergences
(mass parameter does not appear)

— number of (perturbatively) relevant operators are
restricted at d = 4

— SU(Nf) x SU(Nf) symmetry allows for a
richer structure of the free energy in d =3

e Naive scaling: d = 4: operators up to O(¢*) are relevant
d = 3: operators up to O(¢°) are relevant

@ Results of the € expansion at LO are insensitive to the
introduction of higher order terms
— an inherently d = 3 approach is important
— functional renormalization group (FRG)
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Functional Renormalization Group

@ FRG generalizes the idea of the WRG: fluctuations are taken
into account at the level of the quantum effective action

Z[J] = / Dope SWIH[I0) = [[]] = —log Z[J] — / Jo

@ Introduction of a flow parameter k and inclusion of
fluctuations for which g = k

Z[J] = fp¢e—(8[¢]+fJ¢)
e~ 3  oRd

— regulator: mom. dep. mass &
term suppressing low modes
— take the k — 0 limit

R

q
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Functional Renormalization Group

@ Scale-dependent effective action:
_ -1 -
A = —togzdd) - [J5-3 [ R

— k ~ A: no fluctuations = I, [¢] = S[¢]
— k = 0: all fluctuations = [, _o[¢] = I[¢]

@ The scale-dependent effective
action interpolates between
classical- and quantum
effective actions

C2

@ The trajectory depends on Ry 1

but the endpoint does not

Theory space

C3...Cp,
@ Choice of Ry < optimization!
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Functional Renormalization Group

@ Flow of the effective action is described by the Wetterich
equation:

N

o =5 [ [ ToRUa. P+ R (e )] =

q’/p
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Functional Renormalization Group

@ Flow of the effective action is described by the Wetterich
equation:

N

o =5 [ [ ToRUa. P+ R (e )] =

q’/p

o Slightly different form: [§y acts only on Ry]

1 [« 1=~ .
8krk = E /8k Tr Iog[r(f) + Rk] = Eakz .
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Functional Renormalization Group

@ Flow of the effective action is described by the Wetterich
equation:

N

o =5 [ [ ToRUa. P+ R (e )] =

q’/p

o Slightly different form: [§y acts only on Ry]

1 [« 1=~ .
8krk = E /8k Tr Iog[r(f) + Rk] = Eakz .

@ One-loop structure:
— RG change in the n-point vertices are described by
one-loop diagrams [propagators are dressed!]

— functional integro-differential equation [exact!]
@ Main advantage: flows are directly accessible in any dimension
but approximation is needed
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Functional Renormalization Group

@ Local potential approximation (LPA):
1
F[0] = / (5 T [0:0T0:0] + Vi(®))

— O(0?) of the derivative expansion

: .2
— equivalent statement: momentum dependence only in F(k )

@ No small parameter, optimization important!

o Optimal regulator:
Re(q) = (K — a*)O(K* — ¢°)

— derivative expansion does converge’

’]. Balog et al., Phys. Rev. Lett. 123, 240604 (2019)
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Functional Renormalization Group

@ Local potential approximation (LPA):
1
F[0] = / (5 T [0:0T0:0] + Vi(®))

— O(0?) of the derivative expansion

: .2
— equivalent statement: momentum dependence only in F(k )

@ No small parameter, optimization important!
o Optimal regulator:
R(q) = (K* — ¢*)O(K* — ¢°)

— derivative expansion does converge’
@ Optimal flow equation for the effective potential:

kO V), = k—ST K2 4 /Pt

’]. Balog et al., Phys. Rev. Lett. 123, 240604 (2019)
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Chiral transition with the FRG

@ How to build up the most general Ginzburg—Landau potential
for Ny flavors in d = 3 in terms of renormalizable operators?
— renormalizable = perturbatively relevant (or marginal)

@ Dimension of a scalar field in d dimensions: [¢] = (2 — d)/2
— coupling dimension for ~ g,¢": [gs] = ((2 — d)n+ 2d)/2
— for d = 3 we need O(¢°)!

@ Independent invariant for Ny flavors:

L = Tr[ofe]

L = Tr¢iodio]

5 = Tr[oiodTddio]
Iv, = Tr[(®fo)N]

— only h1, I» and /5 enters to the potential
(for Nf = 2, k5 is not independent)
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Chiral transition with the FRG

@ The most general chirally symmetric renormalizable potential:
Vanl®] = m” Tr [010] 4 g1 (Tr [070])° + 2 Tr [of o 0]
+ 0 (Tr[ofe])® + 0 Tr[ofe] - Tr[of oo
+ g Tr[ofodiodie]
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Chiral transition with the FRG

@ The most general chirally symmetric renormalizable potential:

Vanl®] = m” Tr [010] 4 g1 (Tr [070])° + 2 Tr [of o 0]
+ 0 (Tr[ofe])® + 0 Tr[ofe] - Tr[of oo
+ g3 Tr [Tl ddio]

@ Possible Ua(1) breaking terms:
lyet = det ®T + det d,  Jyoy = —det®

— INdQet and det ®f . det  are not independent
from Iyt and the /;

o If ® is too large, I4et becomes perturbatively irrelevant!
— lger ~ O(¢6)
@ For N¢ > 6 the potential does not contain the anomaly
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Chiral transition with the FRG

o Nf :5,62
Vi =a-(detdT + det d)
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Chiral transition with the FRG

o Nf:5,62
Vi =a-(detdT + det d)
o Ny =4:

Va=a-(detd! + detd) + b- Tr[dTd](det dT + det d)
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Chiral transition with the FRG

o Nf=5,6:
Vi =a-(detdT + det d)
o Ny =4:
Va=a-(detd! + detd) + b- Tr[dTd](det dT + det d)
o Ny =3:
Vi = a-(det®d! + det®) + b- Tr[dTd](det dT + det d)
+ a, - (det of + det ®)?
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Chiral transition with the FRG

o Nf=5,6:
Va = a- (det ®T + det ®)
o Ny =4:
Va=a-(detd! + detd) + b- Tr[dTd](det dT + det d)
o Ny =3:
Vi = a-(det®d! + det®) + b- Tr[dTd](det dT + det d)
+ a, - (det of + det <I>)2
o Nf=2:
Vi =a-(det® + det d) 4 by - Tr[dTd](det dT + det d)
+a5 - (det ®T + det )2 + a3 - (det ®T + det )3
+by - (Tr [®T0])?(det dT + det ®)
+by - (Tr [®T0])>(det &T + det ®) + by - Tr (dTd)?(det & + det )
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Chiral transition with the FRG

@ Optimized flow equation:

5

k
KD Ve = ¢ Tr [k + V)1

o ldentification of the scale dependencies:

k5
kO -0, = —...]- O,
; k8n ; 671’2[ ]
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Chiral transition with the FRG

@ Optimized flow equation:

kd —k—ST K2 4 /1

o ldentification of the scale dependencies:

k5
> kdkgn-On=Y_ cl-1-0
@ Problem: " "

— Vf) depends on the fields, not invariants!

— [k* + V,Ez)]: 2N2 x 2NZ2 matrix, in practice cannot be
inverted for a general field configuration
@ Specific background:

1 1
¢ =g + s
1 —(Nf —1)
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Chiral transition with the FRG

@ Optimized flow equation:
k5
kak \//( = w

@ ldentification of the scale dependencies:

5
Z kokgn- O, = Z 6k?[] <Oy

@ The O, operators become linear combinations:

0, = g co‘ﬁs{)'sL
a+B=n

2)1—
Tr (k% + V7)1

— at each order matching rhs and /hs leads to coupling flows
e [ functions: (g, = k(6*n)/2gn)

1
/Bn = kakgn = _5(6 - n)gn + /(8kgn/k(6_n)/2
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Chiral transition with the FRG

@ [ functions without anomaly:
16N (N7 +1) + ga k(N — 1)
3m2Ny(1+m})? !
3L NF(NF +4) + 251,652,k Ny (N7 — 1) + 253 , (N7 — 1) B 3AL. N (NF +2) +2X0 k(N7 — 1)

Bz = —2m} —2

B, = —§ 4 - 5 3
Ba G+ 32NZ(L+ m)? 3m2Nj(1 + mj)?
By = —gart 301k52,6Nf + 85 (N7 —3)  333,x(NF — 4) + Aok Ny (N} +4)

2 = TI2k 372N, (1 + m2)? 372N (1 + mj)? '

GuiNZGBALENF(NZ +7) + 220 k(N7 — 1)) + Go, N; (V2 — D)(3Nf A + 4h )
3m2NF(1+mg)?
200 NG (NG +18) + 637,92k NF(NF — 1) + 121,95, N (N} — 1) + 853, (N7 — 1)
3m2NF (1 +mg)* ’
- 4§1,ka()\2‘ka(Nf2 +19) + 393 (N7 — 4)) + 92,4 (1583, (NF — 4) + N (18X kN5 + Ao 1 (5NF — 1))

B, = 4

P = 37ENF(1+ma)
727\f1]1 G2,k + 631,453 . N7 (2N7 + 3) + 73, (24N7 — 90)
3TENI( T R
B = 45N191.k93,k + 4]\/f92.x)\z.k + (21\2 — 17)g2,kG3.k - 45491,kg§.ka + gg,k(ﬁle —54)
g = — :

2N (1 +m2)? 3m2N(1+m2)*

o Fixed points: S; =0V i
— solve for marginal couplings
— substitute to the relevant couplings
— find fixed points
— check stability matrix (08;/0g;) at fixed points
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Ne | FP m? z1 2 | RD#
50 | O(2N?) | —0.33342 | 0.0017538 0 2
" BY® | 0.040303 | —0.0029448 0.12152 2
" C° | —0.37509 | 0.0019579 —0.011198 1
" G0 | —0.33342 | 0.0017556 | —0.000088291 | 1
20 | O(2N?) | —0.33385 | 0.010939 0 2
" B | 0.043192 | —0.018915 0.31043 2
" C? | -0.38411 | 0.012287 —0.030728 1
" C2° | —0.33393 | 0.011010 —0.0014253 1
10 | O(2N?) | —0.33492 | 0.043430 0 2
" B3® | 0.059163 | —0.086421 0.68317 2
" CI% | —0.43356 | 0.048876 —0.082581 1
" Clo [ —0.33641 | 0.044669 —0.012667 1
6 | O(2N2) | —0.33516 | 0.11855 0 2
" BS 0.40276 | —1.23414 3.80527 2
" c? 1.09084 | —6.45942 16.76628 1
" C® | —0.34848 | 0.12934 —0.069536 1
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Ne | FP | g 2 3 | RD#
5 | O(2NZ) | —0.33386 | 0.16871 0 0 2
" (o —0.36068 | 0.19128 | —0.12675 0 1
” A3 —0.17023 [ 0.14387 | —0.056313 | —2.79735 | 3
Ne | FP | Z 2 a | RD#
4 [ O(2N?) [ —0.32940 | 0.25800 0 0 3(2)
" Cy —0.38129 | 0.31042 | —0.25480 0 2 (1)
" A% —0.34949 | 0.63992 | —1.73326 | —3.82052 | 2

" A% —0.40273 | 0.21168 | 0.17473 | —0.73657 | 2

Nel] FP | m° | @ | g [ a | b |RD#
3 [O(2N7)[—0.31496] 0.43763 0 0 0 3(2)
1 C3 [-0.38262] 0.59725 | —0.62042 0 0 2 (1)

" A;  |-0.01786[0.091631[—0.14148|—0.11900| 0.39087 4
" A7, [-0.41126] 0.73099 [ —0.88199]—0.46585|—0.91131] 1x
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Fixed points and stability

@ Anomaly free fixed points for Ny = 2:

Ne|] FP | m | & | & |RD#
2 | O(2NZ) | —0.27094 | 0.85280 0 4 (3)
" C? —0.20599 | 1.33367 | —1.88211 | 2 (1)
" C? —0.26318 | 0.33093 | 1.71728 | 2 (1)

@ Anomalous fixed points? — numerically challenging
— |a| = 0o, m? = oo with m? 4 a = finite = O(4) FP

@ For Ny > 5 the fixed point structure is consistent with a
second order phase transition

— the Ua(1) anomaly does not play any role
— if Ua(1) is broken at T, fluctuations wash out its effect

@ For Ny = 2,3, 4 the situation is more subtle
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Fixed points and stability

e Case |. (flavor continuity)
— the chiral transition is governed by the C"f fixed points

— for N¢ > 5, irrespectively of the Ua(1) anomaly,
they are IR stable at T¢
= second order transition

— for N¢ = 2,3, 4, if the Ua(1) anomaly disappears,
they are IR stable at T¢
= second order transition

— it is unlikely that the anomaly exactly disappears
= first order transition for Nf = 2,3, 4,
which can become weak if Ua(1) breaking is small
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Fixed points and stability

o Case Il.
— the chiral transition is governed by the CMr fixed points,
except for N = 2
= O(4) fixed point is IR stable for strong anomaly at T¢
— the transition is second order for N > 5,
first order for N = 3,4, and second order for Ny = 2

@ Case lll.

— the chiral transition is governed by the C"f fixed points,
except for Nr =2 and Nf = 3
= O(4) fixed point is IR stable for strong anomaly at T¢
= A?* fixed point is IR stable for nonzero anomaly at T¢
[not all stability eigenvalues are reall]

— the transition is second order for Nf > 5,
first order for Nf = 4, and second order for Nf = 2,3
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Fixed points and stability

Columbia plot:
FRG w/o axial anomaly

second order 1st
U(2)xU(2) order
E(I)
crossover
second order
U(3)xU(3)
0 mu,d =
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Fixed points and stability

Columbia plot:
FRG with axial anomaly

1st
order

crossover

1st order

[ee)
0 mu,d
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Fixed points and stability

Transition orders without anomaly:

[ Ny=2 [ Nj=3 | Ny=4 | N;y>5
¢ e(xﬁpinls ;On 1st order | 1st order 1st order 1st order
FRG (d=3) 2nd order | 2nd order | 2nd order | 2nd order

Transition orders with anomaly:

| Ny=2 | Ny=3 | Ny=4 [ N;>5
¢ e();pinls;on 2nd order* 1st order 1st order | 1lst order
FRG (d = 3) 1st order (Case I) 1st order (Case I)
- 2nd order (Case II) | st order (Case II) | 1st order | 2nd order
2nd order (Case III)| 2nd order (Case III)

*.only with strong anomaly
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@ Re-analysis of the RG flows of the Ginzburg-Landau potential
of chiral transition
— scale evolution is obtained directly at d = 3 using the
Functional Renormalization Group method
— Local Potential Approximation + O(¢®) truncation:
including all relevant and marginal interactions
@ Results can be made consistent with recent lattice QCD
simulations [i.e. chiral transition is second order]
— there exist new classes of fixed points spanned
in the entire N¢ range
— they are IR stable at T¢ for Nf > 5
— they are IR stable at T¢ for Nf = 2,3,4 only if
Ua(1) is restored
e Future:
— improve truncation (irrelevant operators, wavefunction
renormalization, higher derivatives)
— establishing fully non-perturbative fixed point potentials
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