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Introduction

QCD Lagrangian:

L = −1

4
G a
µνG

µνa + q̄i
(
iγµ(D)ij −mδij

)
qj

−→ SU(3) gauge symmetry
−→ UL(Nf )× UR(Nf ) global (approx.) chiral symmetry
−→ anomalous breaking of UA(1) axial symmetry

At low temperatures: spontaneous breaking
SUL(Nf )× SUR(Nf ) −→ SUV (Nf )

Ginzburg-Landau paradigm for second order
(or weakly first order) transitions:

i.) there exists a local order parameter Φ near the transition
ii.) the free energy can be expanded in terms of Φ
iii.) structure of the free energy ←→ symmetries
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Ginzburg–Landau analysis of the chiral transition

GL theory for the chiral transition:
−→ gauge degrees of freedom are integrated out
−→ the emerging order parameter (Φ) is a Nf × Nf matrix
aaaacorresponding to q̄iLq

j
R

−→ chiral transformation: Φ→ LΦR†

The most general free energy functional (no anomaly):

Γ =

∫
x

[
m2 Tr (Φ†Φ) + g1

(
Tr (Φ†Φ)

)2
+ g2 Tr (Φ†ΦΦ†Φ) + ...

+Tr
(
∂iΦ

†∂iΦ) + ...
]

UA(1) anomaly: Kobayashi–Maskawa–’t Hooft determinant

−→ a (det Φ† + det Φ)

Free energy is non-analytic at the critical point
−→ at TC long wavelength fluctuations are important
−→ the UV free energy is analytic, expansion justified
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Ginzburg–Landau analysis of the chiral transition

Pisarski & Wilczek analysis of the Ginzburg–Landau theory 1:

−→ one-loop calculation of the β functions (no anomaly)
−→ counterterms for g1, g2:

δg1, δg2 ∼

Results (ε-expansion, ε = 4− d):

βg1 = −εg1 +
N2
f + 4

4π2
g2

1 +
Nf

π2
g1g2 +

3g2
2

4π2

βg2 = −εg2 +
3

2π2
g1g2 +

Nf

2π2
g2

2

No infrared stable fixed point at TC if Nf >
√

3
=⇒ 2nd order transition cannot occur!

Inclusion of the anomaly: might be 2nd order for Nf = 2
aaaaaaaaaaaaaaaaaaaaaa [O(4) exponents]

1R. D. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984)
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Ginzburg–Landau analysis of the chiral transition

Columbia plot:

1st order

1st
order

crossover

0

∞

∞

second order
O(4)

ms,c

m
s

mu,d

ε expansion with axial anomaly

Gergely Fejős Order of the chiral phase transition for Nf flavors



Ginzburg–Landau analysis of the chiral transition

Columbia plot:

1st order
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Ginzburg–Landau analysis of the chiral transition

Recent lattice QCD result (unimproved staggered fermions):
−→ chiral transition is of second order for all Nf up to the
aaaaconformal window2

2F. Cuteri, O. Philipsen, and A. Sciarra, JHEP 11, 141 (2021).
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Ginzburg–Landau analysis of the chiral transition

Lattice QCD result with highly improved staggered fermions
(Nf = 3)3:
−→ no direct evidence of a first order transition for
aaaa80 MeV . mπ . 140 MeV

Lattice QCD with Mobius domain wall fermions (Nf = 3)4:
−→ critical quark mass mq, crit . 4 MeV

Dyson-Schwinger approach5:
−→ absense of a first order transition for Nf = 3

Non-perturbative conformal bootstrap approach6:
−→ the transition can be of second order for Nf = 3

Contradiction: where is the corresponding IR fixed point?

3L. Dini et al., Phys. Rev. D105, 034510 (2022)
4Y. Zhang et al., arXiv:2401.05066
5J. Bernhardt and C.-S. Fischer, Phys. Rev. D108,114018 (2023)
6S. R. Kousvos and A. Stergiou, SciPost Phys. 15, 075 (2023)
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Ginzburg–Landau analysis of the chiral transition

Potential problems with the Pisarski & Wilczek analysis:
−→ it uses the field theoretical RG
aaaa=⇒ β functions are obtained from UV divergences
aaaaaaa (mass parameter does not appear)
−→ number of (perturbatively) relevant operators are
aaaarestricted at d ≈ 4
−→ SU(Nf )× SU(Nf ) symmetry allows for a
aaaaricher structure of the free energy in d = 3

Naive scaling: d = 4: operators up to O(φ4) are relevant
aaaaaaaaaaaa d = 3: operators up to O(φ6) are relevant

Results of the ε expansion at LO are insensitive to the
introduction of higher order terms
−→ an inherently d = 3 approach is important
−→ functional renormalization group (FRG)
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Functional Renormalization Group

FRG generalizes the idea of the WRG: fluctuations are taken
into account at the level of the quantum effective action

Z [J] =

∫
Dφe−(S[φ]+

∫
Jφ) ⇒ Γ[φ̄] = − logZ [J]−

∫
Jφ̄

Introduction of a flow parameter k and inclusion of
fluctuations for which q & k

aa Zk [J] =
∫
Dφe−(S[φ]+

∫
Jφ)

aaaaaaaa×e−
1
2

∫
φRkφ

−→ regulator: mom. dep. mass
aaaaterm suppressing low modes
−→ take the k → 0 limit

 

 

 

 

 

 

    

k2

k q
0

0

R
k(

q)
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Functional Renormalization Group

Scale-dependent effective action:

Γk [φ̄] = − logZk [J]−
∫

Jφ̄− 1

2

∫
φ̄Rk φ̄

−→ k ≈ Λ: no fluctuations ⇒ Γk=Λ[φ̄] = S[φ̄]
−→ k = 0: all fluctuations ⇒ Γk=0[φ̄] = Γ[φ̄]

The scale-dependent effective
action interpolates between
classical- and quantum
effective actions

The trajectory depends on Rk

but the endpoint does not

Choice of Rk ↔ optimization!
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Functional Renormalization Group

Flow of the effective action is described by the Wetterich
equation:

∂kΓk =
1

2

∫
q

∫
p
Tr [∂kRk(q, p)(Γ

(2)
k + Rk)−1(p, q)] =

1

2

Slightly different form: [∂̃k acts only on Rk ]

∂kΓk =
1

2

∫
∂̃k Tr log[Γ

(2)
k + Rk ] =

1

2
∂̃k
∑

One-loop structure:
−→ RG change in the n-point vertices are described by
aaaaone-loop diagrams [propagators are dressed!]

−→ functional integro-differential equation [exact!]

Main advantage: flows are directly accessible in any dimension
aaaaaaaaaaaaaaa but approximation is needed
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Functional Renormalization Group

Local potential approximation (LPA):

Γk [Φ] =

∫
x

(1

2
Tr [∂iΦ

†∂iΦ] + Vk(Φ)
)

−→ O(∂2) of the derivative expansion

−→ equivalent statement: momentum dependence only in Γ
(2)
k

No small parameter, optimization important!

Optimal regulator:

Rk(q) = (k2 − q2)Θ(k2 − q2)

−→ derivative expansion does converge7

Optimal flow equation for the effective potential:

k∂kVk =
k5

6π2
Tr (k2 + V

(2)
k )−1

7I. Balog et al., Phys. Rev. Lett. 123, 240604 (2019)
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Chiral transition with the FRG

How to build up the most general Ginzburg–Landau potential
for Nf flavors in d = 3 in terms of renormalizable operators?
−→ renormalizable ≡ perturbatively relevant (or marginal)

Dimension of a scalar field in d dimensions: [φ] = (2− d)/2

−→ coupling dimension for ∼ gnφ
n: [gn] = ((2− d)n + 2d)/2

−→ for d = 3 we need O(φ6)!

Independent invariant for Nf flavors:

I1 = Tr [Φ†Φ]

I2 = Tr [Φ†ΦΦ†Φ]

I3 = Tr [Φ†ΦΦ†ΦΦ†Φ]

...

INf
= Tr [(Φ†Φ)Nf ]

−→ only I1, I2 and I3 enters to the potential
aaaa(for Nf = 2, I3 is not independent)
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Chiral transition with the FRG

The most general chirally symmetric renormalizable potential:

Vch[Φ] = m2 Tr [Φ†Φ] + g1

(
Tr [Φ†Φ]

)2
+ g2 Tr [Φ†ΦΦ†Φ]

+ λ1

(
Tr [Φ†Φ]

)3
+ λ2 Tr [Φ†Φ] · Tr [Φ†ΦΦ†Φ]

+ g3 Tr [Φ†ΦΦ†ΦΦ†Φ]

Possible UA(1) breaking terms:

Idet = det Φ† + det Φ, ((((((((((
Ĩdet = det Φ† − det Φ

−→ Ĩ 2
det and det Φ† · det Φ are not independent

aaaafrom Idet and the Ii

If Φ is too large, Idet becomes perturbatively irrelevant!

−→ Idet ∼ O(φ6)

For Nf > 6 the potential does not contain the anomaly
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Chiral transition with the FRG

Nf = 5, 6:

VA = a · (det Φ† + det Φ)

Nf = 4:

VA = a · (det Φ† + det Φ) + b · Tr [Φ†Φ](det Φ† + det Φ)

Nf = 3:

VA = a · (det Φ† + det Φ) + b · Tr [Φ†Φ](det Φ† + det Φ)

+ a2 · (det Φ† + det Φ)2

Nf = 2:

VA = a · (det Φ† + det Φ) + b1 · Tr [Φ†Φ](det Φ† + det Φ)

+a2 · (det Φ† + det Φ)2 + a3 · (det Φ† + det Φ)3

+b2 ·
(
Tr [Φ†Φ]

)2
(det Φ† + det Φ)

+b3 ·
(
Tr [Φ†Φ]

)3
(det Φ† + det Φ) + b4 ·Tr (Φ†Φ)2(det Φ† + det Φ)
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Chiral transition with the FRG
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Chiral transition with the FRG

Optimized flow equation:

k∂kVk =
k5

6π2
Tr [k2 + V

(2)
k ]−1

Identification of the scale dependencies:∑
n

k∂kgn · On =
∑
n

k5

6π2
[...] · On

Problem:

−→ V
(2)
k depends on the fields, not invariants!

−→ [k2 + V
(2)
k ]: 2N2

f × 2N2
f matrix, in practice cannot be

aaaainverted for a general field configuration
Specific background:

Φ = s0


1

1
...

1

+ sL


1

1
...
−(Nf − 1)
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Chiral transition with the FRG

Optimized flow equation:

k∂kVk =
k5

6π2
Tr [k2 + V

(2)
k ]−1

Identification of the scale dependencies:∑
n

k∂kgn · On =
∑
n

k5

6π2
[...] · On

The On operators become linear combinations:

On =
∑

α+β=n

cαβsα0 s
β
L

−→ at each order matching rhs and lhs leads to coupling flows

β functions: (gn = k(6−n)/2ḡn)

βn ≡ k∂k ḡn = −1

2
(6− n)ḡn + k∂kgn/k

(6−n)/2
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Chiral transition with the FRG

β functions without anomaly:

Fixed points: βi = 0 ∀ i
−→ solve for marginal couplings
−→ substitute to the relevant couplings
−→ find fixed points
−→ check stability matrix (∂βi/∂gj) at fixed points
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Nf FP m̄2 ḡ1 ḡ2 RD#

50 O(2N2
f ) −0.33342 0.0017538 0 2

′′ B50
2 0.040303 −0.0029448 0.12152 2

′′ C 50
1 −0.37509 0.0019579 −0.011198 1

′′ C̃ 50
1 −0.33342 0.0017556 −0.000088291 1

20 O(2N2
f ) −0.33385 0.010939 0 2

′′ B20
2 0.043192 −0.018915 0.31043 2

′′ C 20
1 −0.38411 0.012287 −0.030728 1

′′ C̃ 20
1 −0.33393 0.011010 −0.0014253 1

10 O(2N2
f ) −0.33492 0.043430 0 2

′′ B10
2 0.059163 −0.086421 0.68317 2

′′ C 10
1 −0.43356 0.048876 −0.082581 1

′′ C̃ 10
1 −0.33641 0.044669 −0.012667 1

6 O(2N2
f ) −0.33516 0.11855 0 2

′′ B6
2 0.40276 −1.23414 3.80527 2

′′ C 6
1 1.09084 −6.45942 16.76628 1

′′ C̃ 6
1 −0.34848 0.12934 −0.069536 1
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Nf FP m̄2 ḡ1 ḡ2 ā RD#

5 O(2N2
f ) −0.33386 0.16871 0 0 2

′′ C̃ 5
1 −0.36068 0.19128 −0.12675 0 1

′′ A5
3 −0.17023 0.14387 −0.056313 −2.79735 3

Nf FP m̄2 ḡ1 ḡ2 ā RD#

4 O(2N2
f ) −0.32940 0.25800 0 0 3 (2)

′′ C̃ 4
2 −0.38129 0.31042 −0.25480 0 2 (1)

′′ A4
2 −0.34949 0.63992 −1.73326 −3.82052 2

′′ Ã4
2 −0.40273 0.21168 0.17473 −0.73657 2
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Fixed points and stability

Anomaly free fixed points for Nf = 2:

Nf FP m̄2 ḡ1 ḡ2 RD#

2 O(2N2
f ) −0.27094 0.85280 0 4 (3)

′′ C̃ 2
2 −0.20599 1.33367 −1.88211 2 (1)

′′ Ĉ 2
2 −0.26318 0.33093 1.71728 2 (1)

Anomalous fixed points? −→ numerically challenging

−→ |a| =∞, m2 =∞ with m2 + a = finite ⇒ O(4) FP

For Nf ≥ 5 the fixed point structure is consistent with a
second order phase transition
−→ the UA(1) anomaly does not play any role
−→ if UA(1) is broken at Tc , fluctuations wash out its effect

For Nf = 2, 3, 4 the situation is more subtle
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Fixed points and stability

Case I. (flavor continuity)

−→ the chiral transition is governed by the C̃Nf fixed points

−→ for Nf ≥ 5, irrespectively of the UA(1) anomaly,
aaaathey are IR stable at TC

aaaa⇒ second order transition

−→ for Nf = 2, 3, 4, if the UA(1) anomaly disappears,
aaaathey are IR stable at TC

aaaa⇒ second order transition

−→ it is unlikely that the anomaly exactly disappears
aaaa⇒ first order transition for Nf = 2, 3, 4,
aaaaaa which can become weak if UA(1) breaking is small
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Fixed points and stability

Case II.

−→ the chiral transition is governed by the C̃Nf fixed points,
aaaaexcept for Nf = 2
aaaa⇒ O(4) fixed point is IR stable for strong anomaly at TC

−→ the transition is second order for Nf ≥ 5,
aaaafirst order for Nf = 3, 4, and second order for Nf = 2

Case III.

−→ the chiral transition is governed by the C̃Nf fixed points,
aaaaexcept for Nf = 2 and Nf = 3
aaaa⇒ O(4) fixed point is IR stable for strong anomaly at TC

aaaa⇒ A3
1∗ fixed point is IR stable for nonzero anomaly at TC

aaaaaa [not all stability eigenvalues are real!]

−→ the transition is second order for Nf ≥ 5,
aaaafirst order for Nf = 4, and second order for Nf = 2, 3
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Fixed points and stability

Columbia plot:

1st
order

crossover

0

∞

∞

second order
U(3)xU(3)

second order
U(2)xU(2)

m
s

mu,d

FRG w/o axial anomaly
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Fixed points and stability

Columbia plot:

1st order

1st
order

crossover

0

∞

∞

m
s

mu,d

FRG with axial anomaly
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Fixed points and stability

Transition orders without anomaly:

Transition orders with anomaly:

aaa*:only with strong anomaly
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Summary

Re-analysis of the RG flows of the Ginzburg-Landau potential
of chiral transition
−→ scale evolution is obtained directly at d = 3 using the
aaaaFunctional Renormalization Group method
−→ Local Potential Approximation + O(φ6) truncation:
aaaaincluding all relevant and marginal interactions

Results can be made consistent with recent lattice QCD
simulations [i.e. chiral transition is second order]

−→ there exist new classes of fixed points spanned
aaaain the entire Nf range
−→ they are IR stable at TC for Nf ≥ 5
−→ they are IR stable at TC for Nf = 2, 3, 4 only if
aaaaUA(1) is restored

Future:
−→ improve truncation (irrelevant operators, wavefunction
aaaarenormalization, higher derivatives)
−→ establishing fully non-perturbative fixed point potentials
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