Order of the chiral phase transition for N_f flavors

Gergely Fejős

Eötvös University, Budapest Institute of Physics and Astronomy

ELFT Theoretical Physics Seminar

7 May, 2024

GF and T. Hatsuda, arXiv:2404.00554 GF, Phys. Rev. D**105**, L071506 (2022) • QCD Lagrangian:

$$\mathcal{L} = -rac{1}{4}G^{a}_{\mu
u}G^{\mu
u a} + ar{q}_{i}ig(i\gamma^{\mu}(D)_{ij} - m\delta_{ij}ig)q_{j}$$

 \longrightarrow *SU*(3) gauge symmetry

- $\rightarrow U_L(N_f) \times U_R(N_f)$ global (approx.) chiral symmetry
- \rightarrow anomalous breaking of $U_A(1)$ axial symmetry
- At low temperatures: spontaneous breaking $SU_L(N_f) \times SU_R(N_f) \longrightarrow SU_V(N_f)$

イロト イポト イヨト イヨト

• QCD Lagrangian:

$$\mathcal{L}=-rac{1}{4}G^{a}_{\mu
u}G^{\mu
u a}+ar{q}_{i}ig(i\gamma^{\mu}(D)_{ij}-m\delta_{ij}ig)q_{j}$$

 \longrightarrow *SU*(3) gauge symmetry

- $\longrightarrow U_L(N_f) \times U_R(N_f)$ global (approx.) chiral symmetry
- \rightarrow anomalous breaking of $U_A(1)$ axial symmetry
- At low temperatures: spontaneous breaking $SU_L(N_f) \times SU_R(N_f) \longrightarrow SU_V(N_f)$
- Ginzburg-Landau paradigm for second order (or weakly first order) transitions:

i.) there exists a local order parameter Φ near the transition ii.) the free energy can be expanded in terms of Φ iii.) structure of the free energy \longleftrightarrow symmetries

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- GL theory for the chiral transition:
 - \longrightarrow gauge degrees of freedom are integrated out
 - \rightarrow the emerging order parameter (Φ) is a $N_f \times N_f$ matrix corresponding to $\bar{q}_L^i q_R^j$
 - \rightarrow chiral transformation: $\Phi \rightarrow L \Phi R^{\dagger}$
- The most general free energy functional (no anomaly):

$$\begin{split} \Gamma &= \int_{x} \left[m^{2} \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) + g_{1} \left(\operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) \right)^{2} + g_{2} \operatorname{Tr} \left(\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right) + \dots \right. \\ &+ \operatorname{Tr} \left(\partial_{i} \Phi^{\dagger} \partial_{i} \Phi \right) + \dots \right] \end{split}$$

- $U_A(1)$ anomaly: Kobayashi–Maskawa–'t Hooft determinant $\longrightarrow a(\det \Phi^{\dagger} + \det \Phi)$
- Free energy is non-analytic at the critical point
 → at T_C long wavelength fluctuations are important
 → the UV free energy is analytic, expansion justified

• Pisarski & Wilczek analysis of the Ginzburg–Landau theory ¹:

 \rightarrow one-loop calculation of the β functions (no anomaly)

 \rightarrow counterterms for g_1, g_2 :

• Results (ϵ -expansion, $\epsilon = 4 - d$):

$$\beta_{g_1} = -\epsilon g_1 + \frac{N_f^2 + 4}{4\pi^2} g_1^2 + \frac{N_f}{\pi^2} g_1 g_2 + \frac{3g_2^2}{4\pi^2}$$

$$\beta_{g_2} = -\epsilon g_2 + \frac{3}{2\pi^2} g_1 g_2 + \frac{N_f}{2\pi^2} g_2^2$$

- No infrared stable fixed point at T_C if $N_f > \sqrt{3}$ \implies 2nd order transition cannot occur!
- Inclusion of the anomaly: might be 2nd order for $N_f = 2$ [O(4) exponents]

¹R. D. Pisarski and F. Wilczek, Phys. Rev. D**29**, 338 (1984) < = > < = >

Columbia plot:

Gergely Fejős

3

Order of the chiral phase transition for N_f flavors

Columbia plot:

• Recent lattice QCD result (unimproved staggered fermions): \rightarrow chiral transition is of second order for all N_f up to the conformal window²

Gergely Fejős Order of the chiral phase transition for N_f flavors

- Lattice QCD result with highly improved staggered fermions $(N_f = 3)^3$:
 - \longrightarrow no direct evidence of a first order transition for 80 MeV $\lesssim m_\pi \lesssim$ 140 MeV
- Lattice QCD with Mobius domain wall fermions $(N_f = 3)^4$: \rightarrow critical quark mass $m_{q, \text{crit}} \lesssim 4 \text{ MeV}$
- Dyson-Schwinger approach⁵:
 - \rightarrow absense of a first order transition for $N_f = 3$
- Non-perturbative conformal bootstrap approach⁶:

 \longrightarrow the transition can be of second order for $N_f = 3$

Contradiction: where is the corresponding IR fixed point?

- ⁵J. Bernhardt and C.-S. Fischer, Phys. Rev. D108,114018 (2023)
- ⁶S. R. Kousvos and A. Stergiou, SciPost Phys. 15, 075 (2023) $\equiv \rightarrow = -9 \circ \circ$

³L. Dini et al., Phys. Rev. D105, 034510 (2022)

⁴Y. Zhang et al., arXiv:2401.05066

- Potential problems with the Pisarski & Wilczek analysis:
 - \longrightarrow it uses the field theoretical RG
 - $\implies \beta \text{ functions are obtained from UV divergences}$ $(mass parameter does not appear)}$
 - \rightarrow number of (perturbatively) relevant operators are restricted at $d \approx 4$
 - $\longrightarrow SU(N_f) \times SU(N_f) \text{ symmetry allows for a}$ richer structure of the free energy in d = 3
- Naive scaling: d = 4: operators up to $\mathcal{O}(\phi^4)$ are relevant d = 3: operators up to $\mathcal{O}(\phi^6)$ are relevant
- Results of the ϵ expansion at LO are insensitive to the introduction of higher order terms

 \longrightarrow an inherently d = 3 approach is important

 \rightarrow functional renormalization group (FRG)

イロト イボト イヨト

• FRG generalizes the idea of the WRG: fluctuations are taken into account at the level of the quantum effective action

$$Z[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)} \quad \Rightarrow \quad \Gamma[\bar{\phi}] = -\log Z[J] - \int J\bar{\phi}$$

• Introduction of a flow parameter k and inclusion of fluctuations for which $q \gtrsim k$

$$Z_k[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)} \times e^{-\frac{1}{2}\int \phi R_k \phi}$$

- \longrightarrow regulator: mom. dep. mass term suppressing low modes
- \longrightarrow take the $k \rightarrow 0$ limit

• Scale-dependent effective action:

$$\Gamma_k[\bar{\phi}] = -\log Z_k[J] - \int J\bar{\phi} - \frac{1}{2}\int \bar{\phi} R_k \bar{\phi}$$

- $\begin{array}{ll} \longrightarrow k \approx \Lambda: \text{ no fluctuations} & \Rightarrow \Gamma_{k=\Lambda}[\bar{\phi}] = \mathcal{S}[\bar{\phi}] \\ \longrightarrow k = 0: \text{ all fluctuations} & \Rightarrow \Gamma_{k=0}[\bar{\phi}] = \Gamma[\bar{\phi}] \end{array}$
- The scale-dependent effective action interpolates between classical- and quantum effective actions
- The trajectory depends on R_k but the endpoint does not
- Choice of $R_k \leftrightarrow$ optimization!

• Flow of the effective action is described by the Wetterich equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_q \int_p \operatorname{Tr} \left[\partial_k \mathbf{R}_k(q, p) (\Gamma_k^{(2)} + \mathbf{R}_k)^{-1}(p, q) \right] = \frac{1}{2}$$

-

臣

(4 回 ト 4 ヨ ト 4 ヨ ト

• Flow of the effective action is described by the Wetterich equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_q \int_p \operatorname{Tr} \left[\partial_k R_k(q, p) (\Gamma_k^{(2)} + R_k)^{-1}(p, q) \right] = \frac{1}{2}$$

-

.

• Slightly different form: $[\tilde{\partial}_k \text{ acts only on } R_k]$

$$\partial_k \Gamma_k = \frac{1}{2} \int \tilde{\partial}_k \operatorname{Tr} \log[\Gamma_k^{(2)} + \mathbf{R}_k] = \frac{1}{2} \tilde{\partial}_k \sum$$

• Flow of the effective action is described by the Wetterich equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_q \int_p \operatorname{Tr} \left[\partial_k \mathbf{R}_k(q, p) (\Gamma_k^{(2)} + \mathbf{R}_k)^{-1}(p, q) \right] = \frac{1}{2} \left(\int_{\mathbb{R}_k}^{\mathbb{R}_k} (q, p) (\Gamma_k^{(2)} + \mathbf{R}_k)^{-1}(p, q) \right]$$

-0

• Slightly different form: $[\tilde{\partial}_k \text{ acts only on } R_k]$

$$\partial_k \Gamma_k = \frac{1}{2} \int \tilde{\partial}_k \operatorname{Tr} \log[\Gamma_k^{(2)} + \mathbf{R}_k] = \frac{1}{2} \tilde{\partial}_k \sum \left[\sum_{k=1}^{n} \frac{1$$

- One-loop structure:
 - → RG change in the *n*-point vertices are described by one-loop diagrams [propagators are dressed!]
 - \longrightarrow functional integro-differential equation [exact!]
- Main advantage: flows are directly accessible in any dimension but approximation is needed

• Local potential approximation (LPA):

$$\Gamma_{k}[\Phi] = \int_{X} \left(\frac{1}{2} \operatorname{Tr} \left[\partial_{i} \Phi^{\dagger} \partial_{i} \Phi \right] + V_{k}(\Phi) \right)$$

 $\longrightarrow \mathcal{O}(\partial^2)$ of the derivative expansion

- \rightarrow equivalent statement: momentum dependence only in $\Gamma_k^{(2)}$
- No small parameter, optimization important!
- Optimal regulator:

$$R_k(q) = (k^2 - q^2)\Theta(k^2 - q^2)$$

 \longrightarrow derivative expansion does converge⁷

• Local potential approximation (LPA):

$$\Gamma_{k}[\Phi] = \int_{X} \left(\frac{1}{2} \operatorname{Tr} \left[\partial_{i} \Phi^{\dagger} \partial_{i} \Phi \right] + V_{k}(\Phi) \right)$$

 $\longrightarrow \mathcal{O}(\partial^2)$ of the derivative expansion

- \rightarrow equivalent statement: momentum dependence only in $\Gamma_k^{(2)}$
- No small parameter, optimization important!
- Optimal regulator:

$$R_k(q) = (k^2 - q^2)\Theta(k^2 - q^2)$$

 \rightarrow derivative expansion does converge⁷

• Optimal flow equation for the effective potential:

$$k\partial_k V_k = \frac{k^5}{6\pi^2} \operatorname{Tr} (k^2 + V_k^{(2)})^{-1}$$

⁷I. Balog et al., Phys. Rev. Lett. **123**, 240604 (2019) → *A* → *A* = → *A*

- How to build up the most general Ginzburg–Landau potential for N_f flavors in d = 3 in terms of <u>renormalizable</u> operators?
 → renormalizable ≡ perturbatively relevant (or marginal)
- Dimension of a scalar field in *d* dimensions: [φ] = (2 − d)/2
 → coupling dimension for ~ g_nφⁿ: [g_n] = ((2 − d)n + 2d)/2
 → for d = 3 we need O(φ⁶)!
- Independent invariant for N_f flavors:

$$\begin{split} & l_1 &= & \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \\ & l_2 &= & \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ & l_3 &= & \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \end{split}$$

$$I_{N_f} = \operatorname{Tr} \left[(\Phi^{\dagger} \Phi)^{N_f} \right]$$

 \rightarrow only l_1 , l_2 and l_3 enters to the potential (for $N_f = 2$, l_3 is not independent)

. . .

• The most general chirally symmetric renormalizable potential:

$$\begin{aligned} V_{ch}[\Phi] &= m^2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] + g_1 \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + g_2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ &+ \lambda_1 \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^3 + \lambda_2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \cdot \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ &+ g_3 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \end{aligned}$$

イロト イポト イヨト イヨト

Э

• The most general chirally symmetric renormalizable potential:

$$\begin{aligned} V_{ch}[\Phi] &= m^2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] + g_1 \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + g_2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ &+ \lambda_1 \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^3 + \lambda_2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \cdot \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ &+ g_3 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \end{aligned}$$

• Possible $U_A(1)$ breaking terms:

 $I_{det} = \det \Phi^{\dagger} + \det \Phi, \quad \tilde{I}_{det} = \det \Phi^{\dagger} - \det \Phi$

- $\longrightarrow \tilde{I}_{det}^2 \text{ and } \det \Phi^{\dagger} \cdot \det \Phi \text{ are not independent} \\ \text{from } I_{det} \text{ and the } I_i$
- If Φ is too large, I_{det} becomes perturbatively irrelevant! $\longrightarrow I_{det} \sim \mathcal{O}(\phi^6)$
- For $N_f > 6$ the potential does not contain the anomaly

伺下 イヨト イヨト

 $V_A = a \cdot (\det \Phi^{\dagger} + \det \Phi)$

・ロト ・回ト ・ヨト ・ヨト

臣

•
$$\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{5}, \mathbf{6}}$$
:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi)$
• $\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{4}}$:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi) + \mathbf{b} \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$

イロト イヨト イヨト イヨト

E

•
$$\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{5}, \mathbf{6}}$$
:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi)$
• $\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{4}}$:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi) + \mathbf{b} \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
• $\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{3}}$:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi) + \mathbf{b} \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
 $+ \mathbf{a}_2 \cdot (\det \Phi^{\dagger} + \det \Phi)^2$

◆□▶ ◆□▶ ◆□▶ ◆□▶

Ξ

•
$$N_{f} = 5, 6$$
:
 $V_{A} = a \cdot (\det \Phi^{\dagger} + \det \Phi)$
• $N_{f} = 4$:
 $V_{A} = a \cdot (\det \Phi^{\dagger} + \det \Phi) + b \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
• $N_{f} = 3$:
 $V_{A} = a \cdot (\det \Phi^{\dagger} + \det \Phi) + b \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
 $+ a_{2} \cdot (\det \Phi^{\dagger} + \det \Phi)^{2}$
• $N_{f} = 2$:
 $V_{A} = a \cdot (\det \Phi^{\dagger} + \det \Phi) + b_{1} \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
 $+ a_{2} \cdot (\det \Phi^{\dagger} + \det \Phi)^{2} + a_{3} \cdot (\det \Phi^{\dagger} + \det \Phi)^{3}$
 $+ b_{2} \cdot (\operatorname{Tr} [\Phi^{\dagger} \Phi])^{2} (\det \Phi^{\dagger} + \det \Phi) + b_{4} \cdot \operatorname{Tr} (\Phi^{\dagger} \Phi)^{2} (\det \Phi^{\dagger} + \det \Phi)$

• Optimized flow equation:

$$k\partial_k V_k = \frac{k^5}{6\pi^2} \operatorname{Tr} [k^2 + V_k^{(2)}]^{-1}$$

• Identification of the scale dependencies:

$$\sum_{n} k \partial_{k} g_{n} \cdot \mathcal{O}_{n} = \sum_{n} \frac{k^{5}}{6\pi^{2}} [...] \cdot \mathcal{O}_{n}$$

< ロ > < 回 > < 三 > < 三 >

• Optimized flow equation:

$$k\partial_k V_k = \frac{k^5}{6\pi^2} \operatorname{Tr} [k^2 + V_k^{(2)}]^{-1}$$

• Identification of the scale dependencies:

$$\sum_{n} k \partial_{k} g_{n} \cdot \mathcal{O}_{n} = \sum_{n} \frac{k^{5}}{6\pi^{2}} [...] \cdot \mathcal{O}_{n}$$

• Problem:

 $\longrightarrow V_k^{(2)} \text{ depends on the fields, not invariants!} \\ \longrightarrow [k^2 + V_k^{(2)}]: 2N_f^2 \times 2N_f^2 \text{ matrix, in practice cannot be inverted for a general field configuration}$

• Specific background:

$$\Phi = s_0 \begin{pmatrix} 1 & & \\ & 1 & \\ & & \\ & & & \\ & & & 1 \end{pmatrix} + s_L \begin{pmatrix} 1 & & \\ & 1 & \\ & & \\ & & \\ & & &$$

• Optimized flow equation:

$$k\partial_k V_k = \frac{k^5}{6\pi^2} \operatorname{Tr} [k^2 + V_k^{(2)}]^{-1}$$

• Identification of the scale dependencies:

$$\sum_{n} k \partial_k g_n \cdot \mathcal{O}_n = \sum_{n} \frac{k^5}{6\pi^2} [\dots] \cdot \mathcal{O}_n$$

• The \mathcal{O}_n operators become linear combinations:

$$\mathcal{O}_n = \sum_{\alpha+\beta=n} c^{\alpha\beta} s_0^{\alpha} s_L^{\beta}$$

 \longrightarrow at each order matching *rhs* and *lhs* leads to coupling flows • β functions: $(g_n = k^{(6-n)/2} \overline{g}_n)$

$$\beta_n \equiv k \partial_k \bar{g}_n = -\frac{1}{2}(6-n)\bar{g}_n + k \partial_k g_n/k^{(6-n)/2}$$

イロト イポト イヨト イヨト

• β functions without anomaly:

$$\begin{split} \beta_{m^2} &= -2\bar{m}_k^2 - 2\frac{\bar{y}_{1,k}N_f(N_f^2+1) + \bar{y}_{2,k}(N_f^2-1)}{3\pi^2 N_f(1+\bar{m}_k^2)^2}, \\ \beta_{g_1} &= -\bar{g}_{1,k} + 4\frac{\bar{y}_{1,k}^2N_f^2(N_f^2+4) + 2\bar{g}_{1,k}\bar{g}_{2,k}N_f(N_f^2-1) + 2\bar{g}_{2,k}^2(N_f^2-1)}{3\pi^2 N_f^2(1+\bar{m}_k^2)^3} - \frac{3\bar{\lambda}_{1,k}N_f(N_f^2+2) + 2\bar{\lambda}_{2,k}(N_f^2-1)}{3\pi^2 N_f(1+\bar{m}_k^2)^2}, \\ \beta_{g_2} &= -\bar{g}_{2,k} + 8\frac{3\bar{g}_{1,k}\bar{y}_{2,k}N_f + \bar{g}_{2,k}^2(N_f^2-3)}{3\pi^2 N_f(1+\bar{m}_k^2)^3} - \frac{3\bar{g}_{3,k}(N_f^2-4) + \bar{\lambda}_{2,k}N_f(N_f^2+4)}{3\pi^2 N_f(1+\bar{m}_k^2)^2}, \\ \beta_{\lambda_1} &= 4\frac{\bar{g}_{1,k}N_f^2(3\bar{\lambda}_{1,k}N_f(N_f^2+7) + 2\bar{\lambda}_{2,k}(N_f^2-1)) + \bar{g}_{2,k}N_f(N_f^2-1)(3N_f\bar{\lambda}_{1,k}+4\bar{\lambda}_{2,k})}{3\pi^2 N_f^2(1+\bar{m}_k^2)^3} \\ &- 4\frac{2\bar{g}_{1,k}^3N_f^3(N_f^2+13) + 6\bar{g}_{1,k}^2\bar{g}_{2,k}N_f^2(N_f^2-1) + 12\bar{g}_{1,k}\bar{g}_{2,k}^2N_f(N_f^2-1) + 8\bar{g}_{3,k}^3(N_f^2-1)}{3\pi^2 N_f^2(1+\bar{m}_k^2)^4}, \\ \beta_{\lambda_2} &= 4\frac{\bar{g}_{1,k}N_f(\bar{\lambda}_{2,k}N_f(N_f^2+19) + 3\bar{g}_{3,k}(N_f^2-4)) + \bar{g}_{2,k}(15\bar{g}_{3,k}(N_f^2-4) + N_f(18\bar{\lambda}_{1,k}N_f+\bar{\lambda}_{2,k}(5N_f^2-1))))}{3\pi^2 N_f^2(1+\bar{m}_k^2)^3} \\ &- 4\frac{72N_f^2\bar{g}_{1,k}^2\bar{g}_{2,k} + 6\bar{g}_{1,k}\bar{g}_{2,k}N_f(N_f^2-1) + 3\bar{g}_{3,k}^2(2N_f^2-90)}{3\pi^2 N_f^2(1+\bar{m}_k^2)^3}, \\ \beta_{g_3} &= 4\frac{5N_f\bar{g}_{1,k}\bar{g}_{3,k} + 4N_f\bar{g}_{2,k}\bar{\lambda}_{2,k} + (2N_f^2-17)\bar{g}_{2,k}\bar{g}_{3,k}}{\pi^2N_f(1+\bar{m}_k^2)^3} - 4\frac{54\bar{g}_{1,k}\bar{g}_{2,k}^2(4N_f^2-54)}{3\pi^2N_f(1+\bar{m}_k^2)^4}. \end{split}$$

• Fixed points: $\beta_i = 0 \forall i$

- \longrightarrow solve for marginal couplings
- \longrightarrow substitute to the relevant couplings
- \longrightarrow find fixed points
- \rightarrow check stability matrix $(\partial \beta_i / \partial g_j)$ at fixed points

N _f	FP	\bar{m}^2	\bar{g}_1	Ē2	RD#	
50	$O(2N_{f}^{2})$	-0.33342	0.0017538	0	2	
"	B_2^{50}	0.040303	-0.0029448	0.12152	2	
//	C_{1}^{50}	-0.37509	0.0019579	-0.011198	1	
//	$ ilde{C}_1^{50}$	-0.33342	0.0017556	-0.000088291	1	
20	$O(2N_{f}^{2})$	-0.33385	0.010939	0	2	
"	B_2^{20}	0.043192	-0.018915	0.31043	2	
//	C_1^{20}	-0.38411	0.012287	-0.030728	1	
//	$ ilde{C}_1^{20}$	-0.33393	0.011010	-0.0014253	1	
10	$O(2N_{f}^{2})$	-0.33492	0.043430	0	2	
"	B_2^{10}	0.059163	-0.086421	0.68317	2	
//	C_1^{10}	-0.43356	0.048876	-0.082581	1	
//	$ ilde{C}_1^{10}$	-0.33641	0.044669	-0.012667	1	
6	$O(2N_{f}^{2})$	-0.33516	0.11855	0	2	
"	B_{2}^{6}	0.40276	-1.23414	3.80527	2	
//	C_{1}^{6}	1.09084	-6.45942	16.76628	1	
"	$ ilde{C}_1^6$	-0.34848	0.12934	-0.069536	1	
- (日)						

Order of the chiral phase transition for N_f flavors

N_{f}	FP	\bar{m}^2	\bar{g}_1	Ē2	ā	RD#
5	$O(2N_{f}^{2})$	-0.33386	0.16871	0	0	2
"	$ ilde{C}_1^5$	-0.36068	0.19128	-0.12675	0	1
//	A_{3}^{5}	-0.17023	0.14387	-0.056313	-2.79735	3

N _f	FP	\bar{m}^2	\bar{g}_1	Ē2	ā	RD#
4	$O(2N_f^2)$	-0.32940	0.25800	0	0	3 (2)
"	\tilde{C}_2^4	-0.38129	0.31042	-0.25480	0	2 (1)
"	A_2^4	-0.34949	0.63992	-1.73326	-3.82052	2
"	\tilde{A}_2^4	-0.40273	0.21168	0.17473	-0.73657	2

$\mathbf{N}_{\mathbf{f}}$	FP	$ar{m}^2$	$ar{g}_1$	$ar{g}_2$	\bar{a}	\overline{b}	RD#
3	$O(2N_f^2)$	-0.31496	0.43763	0	0	0	3(2)
"	$ ilde{C}_2^3$	-0.38262	0.59725	-0.62042	0	0	2(1)
"	A_4^3	-0.01786	0.091631	-0.14148	-0.11900	0.39087	4
"	A_{1*}^3	-0.41126	0.73099	-0.88199	-0.46585	-0.91131	1*

◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣

• Anomaly free fixed points for $N_f = 2$:

N_{f}	FP	\bar{m}^2	\bar{g}_1	Ē2	RD#
2	$O(2N_{f}^{2})$	-0.27094	0.85280	0	4 (3)
//	$ ilde{C}_2^2$	-0.20599	1.33367	-1.88211	2 (1)
//	\hat{C}_2^2	-0.26318	0.33093	1.71728	2 (1)

- Anomalous fixed points? \longrightarrow numerically challenging $\longrightarrow |a| = \infty$, $m^2 = \infty$ with $m^2 + a =$ finite $\Rightarrow O(4)$ FP
- For N_f ≥ 5 the fixed point structure is consistent with a second order phase transition
 - \longrightarrow the $U_{\mathcal{A}}(1)$ anomaly does not play any role

 \longrightarrow if $U_A(1)$ is broken at T_c , fluctuations wash out its effect

• For $N_f = 2, 3, 4$ the situation is more subtle

イロト イポト イヨト イヨト

- Case I. (flavor continuity)
 - \rightarrow the chiral transition is governed by the \tilde{C}^{N_f} fixed points
 - → for $N_f \ge 5$, irrespectively of the $U_A(1)$ anomaly, they are IR stable at T_C \Rightarrow second order transition
 - \longrightarrow for $N_f = 2, 3, 4$, if the $U_A(1)$ anomaly disappears, they are IR stable at T_C

 \Rightarrow second order transition

 \rightarrow it is unlikely that the anomaly *exactly* disappears \Rightarrow <u>first order transition</u> for $N_f = 2, 3, 4$, which can become weak if $U_A(1)$ breaking is small

イロト イボト イヨト

3

• Case II.

- \rightarrow the chiral transition is governed by the \tilde{C}^{N_f} fixed points, except for $N_f = 2$ $\Rightarrow O(4)$ fixed point is IR stable for strong anomaly at T_C

• Case III.

 \rightarrow the chiral transition is governed by the \tilde{C}^{N_f} fixed points, except for $N_f = 2$ and $N_f = 3$

 \Rightarrow O(4) fixed point is IR stable for strong anomaly at T_C

- $\Rightarrow A_{1*}^{3} \text{ fixed point is IR stable for nonzero anomaly at } T_{C}$ [not all stability eigenvalues are real!]
- \rightarrow the transition is second order for $N_f \ge 5$, first order for $N_f = 4$, and second order for $N_f = 2, 3$

イロト イボト イラト イラト 二日

Columbia plot:

Columbia plot:

Transition orders without anomaly:

	$N_f = 2$	$N_f = 3$	$N_f = 4$	$N_f \ge 5$
$\frac{\epsilon \text{ expansion}}{(\epsilon = 1)}$	1st order	1st order	1st order	1st order
FRG $(d=3)$	2nd order	2nd order	2nd order	2nd order

Transition orders with anomaly:

	$N_f = 2$	$N_f = 3$	$N_f = 4$	$N_f \ge 5$
$\begin{aligned} \epsilon \text{ expansion} \\ (\epsilon = 1) \end{aligned}$	2nd order*	1st order	1st order	1st order
FRG $(d = 3)$	1st order (Case I) 2nd order (Case II) 2nd order (Case III)	1st order (Case I) 1st order (Case II) 2nd order (Case III)	1st order	2nd order

*:only with strong anomaly

イロト イポト イヨト イヨト

Summary

- Re-analysis of the RG flows of the Ginzburg-Landau potential of chiral transition
 - \longrightarrow scale evolution is obtained directly at d=3 using the Functional Renormalization Group method
 - \longrightarrow Local Potential Approximation + $\mathcal{O}(\phi^6)$ truncation: including all relevant and marginal interactions
- Results can be made consistent with recent lattice QCD simulations [i.e. chiral transition is second order]
 - \longrightarrow there exist new classes of fixed points spanned in the entire N_f range
 - \longrightarrow they are IR stable at T_C for $N_f \ge 5$
 - \longrightarrow they are IR stable at T_C for $N_f = 2, 3, 4$ only if $U_A(1)$ is restored

• Future:

- \longrightarrow improve truncation (irrelevant operators, wavefunction renormalization, higher derivatives)
- \longrightarrow establishing fully non-perturbative fixed point potentials