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Motivation

What is a field dependent coupling?
Classical theory:

S [φ] =

∫
L =

∫ [1

2
(∂µφ)2 +

1

2
m2φ2 + gφ4 + ηφ6 + ...

]
Quantum effective action:

Γ[φ] =
∑
n

∫
Γ(n)({pi};µ) φ(p1)...φ(pn)

−→ promote Γ(n)({pi};µ) → Γ(n)({pi};µ, φ) ?

−→ does not make sense (Γ is perturbative in φ)

Multicomponent φa + internal symmetries ⇒ reorganize Γ!

−→ linear symmetries of S are inherited by Γ

−→ only certain (invariant) combinations appear: I1, I2...IN
Reorganized expansion:

Γ[φ] = Γ[I1, I2...] =
∑
{α}

∫
Γ(α)({pi};µ, I1)Iα2

2 Iα3
3 ...IαN

N
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Motivation

Why does it make sense to consider field dependent couplings?

−→ one can still expand them ⇒ non-renormalizable terms

Γ(α)(I1) =
∑
n

Γ
(α)
n I n1

Continuum limit: non-renormalizable operators disappear
(renormalizability!)

−→ BUT: they are important in the IR

Confusion: in the Wilsonian renormalization group
aaaaaaaaaaairrelevance ←→ non-renormalizablilty

Perturbatively non-renormalizable operators are not important
only on a critical surface
−→ corresponding fixed point needs to be

”
close” to Gaussian

Γ
(α)
n does have importance in the IR!

−→ resumming Γ
(α)
n can (actually) be a necessity
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Functional Renormalization Group

The Functional Renormalization Group
ais designed to resum field dependence

Scale dependent partition function:

aa Zk [J] =
∫
Dφe−(S[φ]+

∫
Jφ)

aaaaaaaa×e−
1
2

∫
φRkφ

Scale dependent effective action:  

 

 

 

 

 

    

k2

k q
0

0

R
k(

q)

Γk [φ] = − logZk [J]−
∫
Jφ− 1

2

∫
φRkφ

−→ k ≈ Λ: no fluctuations included

aaaa⇒ Γk [φ]|k=Λ = S[φ]

−→ k = 0: all fluctuations included

aaaa⇒ Γk [φ]|k=0 = Γ[φ]
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Functional Renormalization Group

Flow equation of the effective action:

∂kΓk =
1

2

∫
q,p
Tr
[
∂kRk(q, p)(Γk,2 + Rk)−1(p, q)

]
=

1

2

The rhs is indeed one-loop:
(∂̃k acts only on Rk)

∂kΓk =
1

2

∫
∂̃k Tr log(Γk,2 + Rk)

−→ one-loop but with fully dressed propagators
−→ not a full derivative, cannot be integrated
−→ one always needs to work in approximations
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Functional Renormalization Group

If one is interested in zero momentum couplings:
(Local Potential Approximation - LPA)

Γk [φa] =

∫ [1

2
(∂iφ

a)2 + Vk(φa)
]

−→ no expansion in φa ⇒ non-perturbativity

Simplification: assume that φa is spacetime independent

Flow equation for the effective potential Vk :

∂kVk [I1, I2, ...] =
1

2

∫
p
Tr
[
∂kRk(p)

(
p2 + Vk,2 + Rk(p)

)−1
]

Field dependent couplings:

Vk [I1, I2, ...] =
∑
{α}

V
(α)
k (I1) Iα2

2 Iα3
3 ...IαN

N
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Functional Renormalization Group

How to choose the regulator function?
−→ no approximation ⇐⇒ no regulator (Rk) dependence
−→ in practical applications results do depend on Rk

Wilsonian regulator:

RW
k (q) = lim

M→∞
M2Θ(k2 − q2)

−→ explicitly reproduces the Wilsonian RG

exponential regulator:

Rexp
k (q) = q2/(exp(q2/k2)− 1)

−→ smoothness can be numerically advantageous

optimal regulator (Litim)

R opt
k (q) = (k2 − q2)Θ(k2 − q2)

−→ largest radius of conv. in an amplitude expansion (LPA)
−→ loop integral can be performed explicitly

Gergely Fejős Non-perturbative renormalization of field dependent couplings



Functional Renormalization Group

How to choose the regulator function?
−→ no approximation ⇐⇒ no regulator (Rk) dependence
−→ in practical applications results do depend on Rk

Wilsonian regulator:

RW
k (q) = lim

M→∞
M2Θ(k2 − q2)

−→ explicitly reproduces the Wilsonian RG

exponential regulator:

Rexp
k (q) = q2/(exp(q2/k2)− 1)

−→ smoothness can be numerically advantageous

optimal regulator (Litim)

R opt
k (q) = (k2 − q2)Θ(k2 − q2)

−→ largest radius of conv. in an amplitude expansion (LPA)
−→ loop integral can be performed explicitly
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Functional Renormalization Group

Identification of the field dependent couplings:∑
{α}

∂kV
(α)
k (I1) Iα2

2 Iα3
3 ...IαN

N =
1

2

∫
p
∂̃k Tr log(p2 + Vk,2 + Rk(p)

)
−→ problem: entries of Vk,2 are not functions of the Ii
aaaainvariants but are expressed in terms of background φa

−→ symmetry ensures that the above expansion must contain
aaaainvariant combinations

Task: find a suitable background field through which the
aaaaa above expansion is naturally realized

Remember: reorganized expansion is physically motivated
−→ one is interested in non-perturbativity/resummation in
aaaaone particular invariant (I1)
−→ e.g. in the vacuum I1 6= 0 but Ii ≈ 0 for 2 ≤ i ≤ N
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Application I: Yukawa coupling

Three flavor quark-meson model: [M - mesons, ψ - quarks]

L =
1

2
Tr [∂iM

†∂iM] + ψ̄(∂/+ gYM5)ψ + V [M]

V [M] =
1

2
m2 Tr [M†M] + g1(Tr [M†M])2 + g2 Tr (M†MM†M)

Eff. action (Γ) depends on chirally invariant combinations!

Symmetry breaking: UL(3)× UR(3) −→ UV (3)
Pure meson:
aaaaaaaaaaa I1 = Tr (M†M) −→ nonzero
aaaaaaaaaaaaI2 = Tr (M†M − Tr (M†M)/3)2 −→ 0
aaaaaaaaaaa I3 = Tr (M†M − Tr (M†M)/3)3 −→ 0
Quark-meson:

aaaaaaaaaaaaĨ1 = ψ̄M5ψ −→ 0
aaaaaaaaaaaaĨ2 = ψ̄M5(M†5M5 − Tr (M†5M5)/3)ψ −→ 0
aaaaaaaaaaaa...

Gergely Fejős Non-perturbative renormalization of field dependent couplings



Application I: Yukawa coupling

Based on symmetry breaking, pure mesonic part is:

Vm =
∑
{α}

V (α)(I1) Iα2
2 Iα3

3 ≈ U(I1) + C (I1) Tr (M†M − 1

3
Tr (M†M))2...

Similarly, the fermion-meson interaction is approximated as

Vfm ≈ gY (I1) ψ̄M5ψ + gY ,2(I1) ψ̄M5(M†5M5 −
1

3
Tr (M†5M5))ψ + ...

−→ task: identify invariant operators in the rhs of the flow eq.
−→ problem: how to distinguish each term from each other?
−→ working with a general background field is hopeless

One needs an expansion in terms of M generating I2, Ĩ2, ...
but keeps I1 non-perturbative!

Solution: M = (sa + iπa)Ta ≡ s0T0 + s8T8, s8 � s0!
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Application I: Yukawa coupling

In the background M = (sa + iπa)Ta ≡ s0T0 + s8T8:

I1 = (s2
0 + s2

8 )/2

I2 ∼ s2
0 s

2
8 +O(s4

8 )

I3 ∼ s3
0 s

3
8 +O(s6

8 )

Ĩ1 = ψ(s0T0 + s8T8)ψ̄

Ĩ2 ∼ ψs2
0 s8T8ψ̄ +O(s3

8 )

...

An expansion in terms of s8 and ψ realizes the invariant
expansion that keeps I1 non-perturbative!
Recipe: 1.) Calculate one-loop diagrams in a background
aaaaaaaaaa of s0,s8 and ψ
aaaaaaa 2.) Expand the RG flow equation in terms of s8 and ψ
aaaaaaa 3.) Identify all invariants using the above expressions
aaaaaaa 4.) The coefficients give the non-perturbative flows of
aaaaaaaaaa the field dependent couplings
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Application I: Yukawa coupling

Two diagrams contribute at O(ψ̄ψ)

Commonly known triangle diagram:�
Tadpole diagram from mass

correction of the mesons:

−→ propagators are dressed and thus field dependent
−→ without field dependence the tadpoles are nonexistent
aaaaand the triangle is identically zero
−→ perturbative Yukawa flow at the one-loop level vanishes!

Gergely Fejős Non-perturbative renormalization of field dependent couplings



Application I: Yukawa coupling

Common mistake: δ3V
δψ̄δψδM5

is the Yukawa coupling

−→ this includes contributions from higher order couplings
aaaa(e.g. gY ,2)
−→ to identify gY one needs to project out

”
contaminations”

Yukawa term in the RG eq: (p2
R = p2 + Rk , ∂̃k acts on Rk)∫

p
∂̃k

[
3g3

Y ,k/2

(p2
R + g2

Y ,k
1
3 I1)(p2

R + U ′k)
−

4
3g

3
Y ,k

(p2
R + 1

3g
2
Y ,k I1)(p2

R + U ′k + 4
3Ck I1)

−
1
6g

3
Y ,k + 2

3 I1g
2
Y ,kg

′
Y ,k + 2

3 I
2
1 gY ,kg

′2
Y ,k

(p2
R + 1

3g
2
Y ,k I1)(p2

R + U ′k + 2I1U ′′k )
+

9g ′Y ,k/2

p2
R + U ′k

+
4g ′Y ,k

p2
R + U ′k + 4

3Ck I1
+

3g ′Y ,k/2 + ρg ′′Y ,k
p2
R + U ′k + 2I1U ′′k

]
ψ̄M5ψ

−→ non-perturbative in I1
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6g

3
Y ,k + 2

3 I1g
2
Y ,kg

′
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3 I
2
1 gY ,kg
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Y ,k

(p2
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3g
2
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p2
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Application I: Yukawa coupling

Is it really necessary to make couplings depend on the field?
−→ expansion in I1 would lead to ordinary flowing couplings

Problem! A typical contribution contains a propagator

1

p2
R + U ′k

=
1

p2
R + m2

k + g1,k I1 + ...
=

1

p2
R + m2

k

+O(I1)

IF the potential is symmetry breaking (m2 < 0), this blows up!
−→ singular RG flow
−→ resummation in I1 is a necessity

Why do not such problems occur in the field theoretical RG?
(e.g. in MS or M̄S schemes)

−→ field theoretical RG provides a massless scheme

−→ running couplings are determined via UV divergences
aaaa⇒ mass parameters never appear in denominators!

Wilsonian RG and the Functional RG are more general
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Application I: Yukawa coupling

Parametrization:

L =
1

2
Tr [∂iM

†∂iM] + ψ̄(∂/+ gYM5)ψ + V [M]− h0s0 − h8s8

V [M] = U(I1) + g2 Tr (M†MM†M); U(I1) =
1

2
m2 Tr [M†M]

+g1(Tr [M†M])2

PCAC relations: hns = m2
πfπ, h s = 1√

2
(2m2

K fK −m2
πfπ)

Ward identities: s ns = fπ, s s =
√

2(fK − fπ/2)

mπ and mK determines U ′ and g2

−→ changing U ′′ allows for tuning mσ

−→ we choose 450MeV . mσ . 600MeV
aaaa(⇒ 10 . U ′′ . 20)
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Application I: Yukawa coupling

Choice for the regulator: Rk(q) = (k2 − q2)Θ(k2 − q2)
−→

”
optimal” for the LPA

Dressed Yukawa coupling as a function of the bare one
(the UV scale was set to Λ = 1GeV )

Note: one-loop Yukawa β-function is zero
−→ no flow without field dependence
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Application II: UA(1) anomaly

Meson model with anomaly: [M - mesons]

L =
1

2
Tr [∂iM

†∂iM] + a(detM† + detM) + V [M]

V [M] =
1

2
m2 Tr [M†M] + g1(Tr [M†M])2 + g2 Tr (M†MM†M)

Ansatz for the effective action:

Γk =

∫ [1

2
Tr [∂iM

†∂iM] + Ak [I1](detM† + detM) + Vk [M]
]

Vk [M] = Uk [I1] + Ck [I1] I2

Invariant identification:

I1 = Tr [M†M], I2 = Tr [(M†M − Tr [M†M]/3)2]

Idet = (detM† + detM)|s0,s8 ∼ s3
0 + 3s2

8 s0/2
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Application II: UA(1) anomaly

Identification of the field dependent couplings:

∂kUk + ∂kCk · I2 + ∂kAk · Idet =
1

2

∫
p
∂̃k Tr log(p2 + Vk,2 + Rk(p)

)
Expanding the rhs in terms of s8 will generate invariants:

=⇒ ∂kUk , ∂kCk , ∂kAk

 3

 4

 5

 6

 7

 8

 9

 0  20  40  60  80  100  120  140

A
k
=

0
 [

G
e

V
]

√I1 [MeV]

Anomaly coefficient A < 0
but |A| decreases with I1!

As the chiral condensate
evaporates, the anomaly
wants to go up!
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Application II: UA(1) anomaly

Coupling the nucleon field to the linear sigma model

L int = gY ψ̄M5ψ, ψT = (p, n)

Normal nuclear density, nN ≈ 0.17 fm−3 ≈ (109.131MeV )3

determines the Fermi momentum:
−→ pF ≈ 267.9MeV ≈ 1.36 fm−1 (mean field value)

The quasiparticle mass in the medium (Landau mass) is
ML ≈ 0.8mN ⇒ sns,N ≈ 69.52MeV

As a result, the anomaly strengthens at the nuclear liquid-gas
transition:

|A(s ns = s ns ,N)| − |A(s ns = fπ)|
|A(s ns = fπ)|

≈ 20%

No Yukawa flow is taken into account
−→ interplay between the anomaly and the Yukawa coupling
aaaacould be important (work in progress)
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Application II: UA(1) anomaly

Several UA(1) breaking operators:

−→ Ak(I1) (detM + detM†)

−→ Bk(I1) (detM + detM†)2

−→ ...

[Note: (detM† − detM) is pseudoscalar and
aaaaaa (detM† − detM)2 is not independent]

Higher dimension ⇔ less importance at large scale
(∼ 1GeV is not so large after all)

New UA(1) breaking operators with fermions:

−→ Ãk(I1)(εabc(q̄ ◦ q)1aM2bM3b + h.c .)
−→ ...

Ãk has never been investigated before [NLO in terms on
operator dimensionality ⇒ comes before ∼ (detM + detM†)2]
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Application II: UA(1) anomaly

Renormalization group flows of field dependent couplings

−→ multicomponent fields

−→ resummation of invariant operator(s)

−→ realized naturally by the FRG framework

Application I.: flowing Yukawa coupling (3-flavor QM model)

−→ the naive δ3Γ/δψ̄δψδM5 definition is invalid
−→ one needs to carefully project out

”
contaminations”

−→ ∼ 30% difference is obtained compared to bare value

Application II.: ‘t Hooft coupling (3-flavor meson model)
−→ field dependent anomaly function decreases with χ-cond.
−→ as the condensate evaporates, the anomaly increases
−→ nuclear liquid-gas transition: ∼ 20% jump in the anomaly
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