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The topological term in QCD

Renormalizability, Lorentz-invariance and gauge-invariance allow for a gluonic
θ-term in the QCD action:

SQCD(θ) =
1

2

∫
d4x Tr [Gµν(x)G

µν(x)] +

∫
d4x

Nf∑
f=1

ψ( /D +mf )ψ + θQ

Q =
g2

32π2

∫
d4x εµνρσ Tr [G

µν(x)Gρσ(x)] ∈ Z

The topological charge Q is a gauge-invariant integer quantity corresponding to
the number of windings of the gauge field Aµ(x) around the group manifold at

x→ ∞.

Such coupling introduces a non-trivial dependence on θ:

ZQCD(θ) =

∫
DADψDψeiSQCD+iθQ =

∞∑
n=−∞

eiθn
∫
Q=n

DADψDψeiSQCD .
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Physical relevance of θ-dep. in QCD and related theories

The relevance of θ-dependence relevance is broad,
covering both theoretical and phenomenological aspects of the Standard Model.

Phenomenology

• Non-zero θ → Explicit breaking of CP symmetry
=⇒ non-zero neutron Electric Dipole Moment (nEDM).
Experiments found nEDM well compatible with zero =⇒ |θ(exp)| ≲ 10−9 − 10−10

• No CP violation from QCD =⇒ fine-tuning problem on θ: strong-CP problem
=⇒ new physics beyond Standard Model to explain it (Peccei–Quinn axion)

Theory

• Q breaks the U(1)A flavor symmetry through anomaly =⇒ large mass of η′

meson. Physics of the η′ related to QCD θ-dependence in the ideal limit of large
number of colors: Nc → ∞

• A non-vanishing θ changes the QCD vacuum =⇒ Does θ change the confining
properties of strong interactions? How and why?

• θ-dep. in 2d theories: e.g., 2d CPN−1 models, 2d U(N) Yang–Mills, . . .
Extensively studied in the large-N limit (analogy with large Nc)
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Topology and the axial anomaly
At energy scales ≪ Λ but ≫ mu,md ∼ ml, lightest quark masses are small

perturbation of massless QCD. Massless QCD enjoys a global flavor chiral symmetry:

G = SU(2)L ⊗ SU(2)R ⊗U(1)V ⊗U(1)A

The U(1)A classical invariance is anomalous (functional measure not invariant) =⇒
not a symmetry of the quantum theory! (t ’Hooft, PRL 37, 1976)

Anomaly proportional to the gluon topological charge:

ψL → eiαψL

ψR → e−iαψR

=⇒ DψDψ → DψDψ ei2NfαQ

∫
DψDψDAeiS

(mf =0)

QCD +iθQ −→
U(1)A

∫
DψDψDAeiS

(mf =0)

QCD +iθQei2NfαQ

=⇒ S
(mf =0)

QCD (θ) −→
U(1)A

S
(mf =0)

QCD (θ + 2Nfα)

This means that, in the chiral limit, QCD is θ-independent because of the axial
anomaly, as the θ-term is reabsorbed via quark field redefinition: α = −θ/(2Nf ).

This apparently seems in contradiction with the expected behavior
of QCD when the number of colors N → ∞.
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The large-N limit of QCD
Let us consider the ’t Hooft limit N → ∞ (Nf fixed) with g2N = λ constant:

g21loop(µ)

4π2
=

3

(11N − 2Nf ) log(µ/Λ)
=⇒ g2 ∼

N→∞
O
(

1

N

)
if Λ ∼

N→∞
O(N0).

At large-N the loop-diagrammatic expansion of QCD can be systematically
rearranged in powers of 1/N (non-perturbative in λ) (t ’Hooft, NPB 72, 1974)

• Leading order: Purely-gluonic planar diagrams
• Sub-leading order: planar diagrams with one quark line, suppressed as 1/N .

Apparent contradiction −→ U(1)A puzzle

• ml → 0 at fixed N :
QCD becomes θ-independent in the chiral limit because of the anomaly for
any fixed value of N . Cancellation due to dynamical quark contribution.

• N → ∞ at fixed ml:
quark loops are suppressed compared to the gluonic contribution =⇒
quarks decouple, QCD becomes pure-gauge theory in the large-N limit

How can anomaly cancel θ-dependence at large-N in the chiral limit?
C. Bonanno Aspects of topology and confinement in large-N gauge theories 14/05/24 4/18



Phenomenological role of the topological susceptibility
Key quantity to solve the U(1)A puzzle: the topological susceptibility χ

χ ≡ lim
V→∞

⟨Q2⟩
V

=
1

V

∫
d4x d4y ⟨q(x)q(y)⟩ =

∫
d4x ⟨q(x)q(0)⟩

Q =
g2

32π2

∫
d4x εµνρσ Tr [G

µν(x)Gρσ(x)] ≡
∫
d4x q(x)

The topological susceptibility can be seen as the leading “response” of the QCD
partition function when a θ-term is turned on:

ZQCD(θ)

ZQCD(0)
= ⟨eiθQ⟩θ=0 = 1 +

χθ2

2
+ . . .

=⇒ χ = 0 in the chiral limit!

χ ∝ d2ZQCD(θ)

dθ2
= 0 because ZQCD is θ-independent when ml → 0

C. Bonanno Aspects of topology and confinement in large-N gauge theories 14/05/24 5/18



Witten–Veneziano solution to U(1)A puzzle
Large-N expansion of topological charge density correlator:

GQCD(p
2) ≡

∫
d4xeip·x ⟨q(x)q(0)⟩

GQCD(p
2) = GYM(p2)−

∑
mesons

|An|2
p2 +m2

n

+O
(
1/N2

)
p2 = 0 =⇒ χ

QCD
= χ

YM
−

∑
mesons

|An|2
m2

n

O(N0): pure-Yang–Mills contribution χYM

O(N−1): contribution of mesonic state propagation: m2
n ∼ N0, |An|2 ∼ N−1

Solution: there is a meson state (η′) with m2 ∼ O(1/N) which cancels
pure-gauge contribution to χ

QCD
(Witten, NPB 149, 1979; Veneziano, NPB 156, 1979)

0 =
m→0

χQCD = χYM − |Aη′ |2/m2
η′ =⇒ χYM = |Aη′ |2/m2

η′ ∼ O(N0).

|Aη′ |2 = F 2
πm

4
η′/6 =⇒ χ

YM
= F 2

πm
2
η′/6

η′ massless Nambu–Goldstone boson not in the chiral but in the large-N limit!
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Large-N θ-dependence of Yang–Mills vacuum energy
Witten–Veneziano + general arguments constrain θ-dependence of vacuum energy:

E(θ) = − 1

V
log

[
ZYM(θ)

ZYM(0)

]
E(θ) =

1

2
χθ2

(
1 + b2θ

2 + b4θ
4 + . . .

)
χ =

⟨Q2⟩
V

∣∣∣∣
θ=0

b2 = − 1

12

⟨Q4⟩ − 3 ⟨Q2⟩2

⟨Q2⟩

∣∣∣∣
θ=0

b2n ∝ ⟨Q2n⟩c

• θQ ∝ θg2εµνρσ Tr(GµνGρσ) ∼ O(λ θ/N) =⇒ actual expansion parameter: θ/N

• E ∼ O(N2) (number of color degrees of freedom)

=⇒ E(θ,N) ∼
N→∞

N2f

(
θ

N

)
(Witten, PRL 81, 1998)

Witten–Veneziano requires: χYM(N) = χ
YM

+ O(1/N2), χ
YM

∼ O(N0)

=⇒ b2(N) =
b̄2
N2

[1 +O(1/N2)]
(
b2n(N) ∼

N→∞
1/N2n

)
How to check this scenario? θ-dependence intrinsically non-perturbative

=⇒ Needs non-perturbative first-principle methods: lattice numerical approach
What are the main difficulties found using this approach?
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Topology freezing
P ∝ e−SE sampled with Monte Carlo methods to obtain representative ensemble {Oi} →

⟨O⟩ =
∫

Dϕ e−SE[ϕ]O[ϕ]∫
Dϕ e−SE[ϕ]

obtained from ensemble mean.

Approaching the continuum limit, customary algorithms experience Topological Freezing →
machine time needed to generate representative ensemble of Q grows exponentially.

Severity increases at large N .

N = 3, a ≃ 0.056 fm≃ (3.5 GeV)−1

N = 3, a ≃ 0.039 fm ≃ (5.1 GeV)−1

Parallel Tempering on Boundary Conditions
Proposed in (Hasenbusch, 2017 [1706.04443]) for 2d CPN−1.
First applied to 4d SU(N) in (CB et al., 2021 [2012.14000]).

N = 6, a ≃ 0.089 fm ≃ (2.2 GeV)−1

Combine simulations with periodic and open boundaries.
Open: Q fluctuates a lot because is no more constrained to

be integer, but boundaries introduce systematics.
Periodic: Q is measured with periodic boundaries, where

unphysical effects due to the open boundaries are avoided.
Simulate simultaneously systems with varying boundary
conditions with swaps of configurations and take best of

both worlds!
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Higher-order cumulants and imaginary-θ simulations
S
(E)
YM = Sθ=0 + iθQ =⇒ at non-zero θ the Euclidean action is complex

=⇒ sign problem, no Monte Carlo simulations

Imaginary-θ simulations: sign problem avoided through analytic continuation, θ = iθI .

S → S + θIQ, θI ≡ iθ =⇒ kn → kn(θI) = ⟨Qn⟩c (θI) ∝
dnEYM(θI)

dθnI

0 6 12 18 0 6 12 18 0 6 12 18
θL

0

2

4

6

8
×10−5

k1/V

k2/V

k3/V

Further benefits:

• coupling Q to the action acts as a source
term and improves signal-to-noise ratio.

• Imaginary-θ fit =⇒ extract χ and b2
from combined fit of θI -dependence:

⟨Q⟩
V

(θI) = χ(θI − 2b2θ
3
I + . . . )

⟨Q2⟩ − ⟨Q⟩2

V
(θI) = χ(1− 6b2θ

2
I + . . . )

⟨Q3⟩c
V

(θI) = χ(−12b2θI + . . . )
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Large-N limit of χ from the lattice

0 1/62 1/42 1/32

1/N2

0.015

0.020

0.025

0.030

0.035

χ
/σ

2

Parallel Tempering +
Imaginary-θ

CB, Bonati, D’Elia, JHEP
03 (2021) 111

[arXiv:2012.14000]

Witten–Veneziano: χ1/4
YM

≃ 180 MeV +O(1/N2)

Lattice: χ
YM
/σ2 = 0.0199(10) + 0.08(2)/N2

lim
N→∞

χYM/σ
2 = 0.0199(10) =⇒ lim

N→∞
χ1/4

YM
= 173(8) MeV

C. Bonanno Aspects of topology and confinement in large-N gauge theories 14/05/24 10/18



Large-N limit of b2 from the lattice

0 1/6 1/4 1/3
1/N

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

b 2

1)

2)

3)

Parallel Tempering +
Imaginary-θ

CB, Bonati, D’Elia, JHEP
03 (2021) 111

[arXiv:2012.14000]

Large-N prediction: b2 = b̄2/N
2 +O(1/N4)

1) b2 = b̄2/N
γ −→ γ = 2.17(26)

2) b2 = b̄2/N
2 −→ b̄2 = −0.193(10)

3) b2 = b̄2/N
2 + b̄

(1)
2 /N4 −→ b̄

(1)
2 = −0.17(35)
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Witten–Veneziano mechanism beyond p2 = 0
Witten–Veneziano mechanism assumes topological charge correlator to be

dominated by the p2 = 0 behavior (topological susceptibility χ)

G(p2) =

∫
d4xeip·x ⟨q(x)q(0)⟩ = χ− p2χ′ +O(p4), χ′ =

1

8

∫
d4x |x|2 ⟨q(x)q(0)⟩

G(p2 = 0) ∼ G(p2 ≃ m2
η′) for the Witten–Veneziano mechanism to hold

=⇒ |χ′| ≪ χ/m2
η′ bound on the topological susceptibility slope χ′.

Using the 1/N expansion of G(p2) at large-N (CB, JHEP 01 (2024) 116 [2311.06646]):

χ′
YM

N
=

[
lim
m→0

χ′
QCD

N

]
+
F 2
π

N
≃ (12 MeV)

2

=⇒ χ′/N ∼ O(N0) at large N

The numerical value of this prediction was obtained using:
F 2
π/N ≃ [55(5) MeV]

2 (lattice large-N result, García Pérez et al., 2020 [2011.13061])
lim
m→0

χ′
QCD

≃ −[32.8(2.4) MeV]2 (Chir. Pert. Theo., Leutwyler, 2000 [hep-ph/0008124])
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First reliable lattice determination of χ′ in SU(3)

0.0 0.2 0.4 0.6 0.8
a2ncool/r

2
0

0

1

2

3

4

5

6

7

8

9

r2 0
χ

′

×10−3

Final result

Main problem: correlators
computed after smoothing to reduce
noise. Sources are smeared up to
radius rs: ⟨qsmear(x)qsmear(0)⟩.
Correlator unphysical for r < rs
=⇒ using smeared correlators

introduces a dependence of χ′ on rs.

Strategy: compute continuum limit
at fixed rs, then take rs → 0

(CB, JHEP 01 (2024) 116 [2311.06646])

χ′(N = 3) = [17.2(2.1) MeV]2

From same simulations: χ(N = 3) = [200.4(3.6) MeV]4

=⇒ χ′/(χ/m2
η′) ≃ 0.16 =⇒ supports Witten–Veneziano mechanism

χ′/N |N=3 = [10.0(1.2) MeV]2

remarkably close to our large-N estimate limN→∞ χ′/N ≃ (12 MeV)2.
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Confinement in the large-N limit
The ’t Hooft large-N limit assumes g2 ∼ O(1/N), meaning that Λ ∼ O(N0).

This assumes confinement to survive the large-N limit.

At θ = 0 well-verified assumption from the lattice.

• Dynamically-generated scale: ΛMS(N = ∞)/
√
σ = 0.515(3)

(González-Arroyo & Okawa, 2013 [1206.0049])

• Critical deconfinement temperature: Tc(N = ∞)/
√
σ = 0.595(2)

(Lucini et al., 2012 [1202.6684])

Relevant issue: what happens to confinement at non-vanishing θ?
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The deconfinement transition at non-vanishing θ

Vacuum Energy (T = 0) −→ Free Energy (finite-T )

f(T, θ) = f(T, 0) + 1
2
χ(T )θ2 + . . .

f(T, 0) = f(Tc, 0) +
T−Tc
Tc

ϵ+ . . .

• Deconfinement transition is first order (N > 2).
• If still first order at non-zero θ, at Tc(θ) equal free energies in the two phases.

Imposing fc
(
Tc(θ), θ

)
= fd (Tc(θ), θ) we have: (D’Elia et al., 2012 [1205.0538])

Tc(θ) = Tc(0)[1−Rθ2 +O(θ4)], R =
1

2

∆χ(θ = 0)

L(θ = 0)
.

• R related to properties of the θ = 0 transition:
∆χ = χc − χd, L = ϵd − ϵc (Latent Heat)

• L ∼ O(N2) (number of degrees of freedom)

• χc ∼ O(N0) (Witten–Veneziano)

• χd ∼ e−N (CB et al., 2024 [2312.12202])

=⇒ R > 0 ∼ O(1/N2)

=⇒ Tc slightly reduced at non-zero θ
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Large-N θ-dependence of Tc from the lattice
N = 3: deconf. transition exists at small-θ and is first-order (D’Elia et al., 2013

[1306.2919]), and imaginary-θ shows reduction of Tc (D’Elia et al., 2012 [1205.0538]).
Predicted relation R = ∆χ/(2L) holds for N = 3 (Borsanyi et al., 2023 [2212.08684]).

N > 3: using parallel tempering + imaginary-θ, we can show that this scenario
remains true also in the large-N limit (CB et al., 2024 [2312.12202])

0 1/31/41/6
1/N

0.000

0.005

0.010

0.015

0.020

0.025

R

1/N2 fit (latent heat)

1/N2 fit (imaginary-θ)

Latent heat − [arXiv:2212.08684]

Latent heat − This work

Imaginary-θ − [arXiv:1205.0538]

Imaginary-θ − This work

• From imaginary-θ fit
R = R/Nγ −→ γ = 2.20(24)
R = R/N2 −→ R = 0.159(4)

R = R
N2 + R

(1)

N4 → R
(1)

= 0.22(25)

• From latent heat perfectly agreeing
results: R = 0.177(14).
The lattice thus fully confirms:
R = ∆χ/(2L) = R/N2 +O(1/N4)
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The θ-dependence of SU(N) Yang–Mills spectrum from the lattice

String tension and mass of lightest glueball state G (G(θ = 0) = 0++) are found to
decrease with θ (parallel tempering + imaginary-θ) (CB et al., 2024 [2402.03096])
=⇒ perfectly fits with picture of reduction of confinement scales at non-zero θ

mG(θ) = m0++(1 +m2θ
2 + . . . ), σ(θ) = σ(0)(1 + s2θ

2 + . . . )

m2 = m2/N
2, s2 = s2/N

2. Lattice result: m2 < 0, s2 < 0
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G

N = 3, β = 6.40
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a2σ ×10−2
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−4.0
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−1.0

−0.5

a
2
σ

×10−2 N = 3

m2

s2

0 2 4 6
a2σ ×10−2
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−2

−1

N
2
s 2

×10−1

N = 3

N = 6

θ-dep. not cancels in dimensionless ratios:

Tc(θ)√
σ(θ)

≃ 0.595(2)− 0.044(2)

(
θ

N

)2

+ . . .

mG(θ)√
σ(θ)

≃ 3.07(2)− 0.041(21)

(
θ

N

)2

+ . . .
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Conclusions and take-home messages

• Combining Parallel Tempering + imaginary-θ it is possible to accurate study
θ-dependence at large-N on the lattice beyond leading order

• At large-N and at non-vanishing (small) θ the lattice confirms effective
dependence on θ/N , and expected large-N scaling already holds for N ≥ 3

• At large-N the confined phase survives: all confining scales have finite large-N
limit. With non-vanishing (small) θ confinement is “reduced” but not lost

• Above scenario confirmed by decrease of Tc, σ and m0++ at non-zero θ. Leading
O(θ2) corrections are O(1/N2) for these quantities

• Lattice results for χ and χ′ support the large-N Witten–Veneziano mechanism,
and show that N = 3 is remarkably “close” to N = ∞

Some future outlooks

• N = 3 result for χ′ very close to large-N prediction. Lattice large-N investigation?

• Recently, we showed that large-N limit of chiral condensate is very close to N = 3
value using large-N twisted volume-reduced models [1-site lattice but
N ∼ O(100)] (CB et al., 2023 [2309.15540]).

Chiral-symmetry restoration temperature at large N? How does it compare with
deconfinement one?
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Back-up Slides



Continuum limit of b4 in SU(2) Yang–Mills theory

0.0 0.2 0.4 0.6 0.8 1.0
σa2 ×10−2

0.0

0.2

0.4

0.6

0.8

1.0

b 4

×10−3

E
YM

(θ)− E
YM

(0) = 1
2χθ

2(1 + b2θ
2 + b4θ

4 + . . . )

N = 2: b4 = 6(2) · 10−4 (CB et al., 2019 [1807.11357])

N = 3: |b4| ≲ 4 · 10−4 (Bonati et al., 2015 [1512.01544])

Holo. Yang–Mills: b4 ≃ 0.033/N4 (using b̄(lattice)2 ) (Bigazzi et al., 2015 [1506.03826])

−→ b
(HYM)
4 (N = 2) ∼ 2 · 10−3 ∼ 3.3 b

(lattice)
4 (N = 2)
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Euclidean topological charge density 2-pnt correlator
G(x) =

∫
d4x ⟨q(x)q(0)⟩ < 0 for any r ≡ |x| > 0 because of reflection positivity.

Reflection positivity: ⟨Θ[O(Θx)]O(x)⟩ > 0 for any operator O
Θ = Euclidean time reflection + complex conjugation

Since q(x) is T and P odd =⇒ G(x) < 0 for r > 0.

• Perturbation theory: G(x) ∼ −C2/(r8 log2 r) for short distances r ≪ 1
(Vicari, 1998 [hep-lat/9901008])

• G(x) ∼ −A exp{−mr} for large distances r ≫ 1, with m mass of lightest state in the
PC = −+ channel (JLQCD Collaboration, 2015 [1509.00944])

However:
∫
d4xG(x) = χ = ⟨Q2⟩ /V > 0. How to reconcile with reflection positivity?

=⇒ G(x) has a positive non-integrable singularity in x = 0 due to a contact term
which cancels the negative divergent integral limε→0

∫
r>ε

d4xG(x). The residue of such
cancellation is the positive and finite topological susceptibility.

Similar arguments apply to χ′ ∝
∫
d4xG(x)|x|2, which is finite too. Due to |x|2

promoting the long-distance tail and depressing the contact term, χ′ can be either
positive or negative, and does not vanish in the chiral limit (unlike χ).
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