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The topological term in QCD

Renormalizability, Lorentz-invariance and gauge-invariance allow for a gluonic
f-term in the QCD action:

Saco(®) = 5 [ dto Tr(Gu(@)G (@)] + [ d'e Y T +ms)b+0Q
f=1

2
Q - /d4x Epvpo T [GH ()G (2)] € Z

~ 3272

The topological charge @ is a gauge-invariant integer quantity corresponding to
the number of windings of the gauge field A, (z) around the group manifold at
T — 00.

Such coupling introduces a non-trivial dependence on 6:

Zqon(0) = / DADYDipetSacr i@ = Y= ¢ifn / DADYDipeiSacp .
Q=n

n=-—oo
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Physical relevance of #-dep. in QCD and related theories

The relevance of 6-dependence relevance is broad,
covering both theoretical and phenomenological aspects of the Standard Model.

Phenomenology

e Non-zero § — Explicit breaking of CP symmetry
= non-zero neutron Electric Dipole Moment (nEDM).
Experiments found nEDM well compatible with zero = [9‘*?)| < 107? — 10~ '°

e No CP violation from QCD = fine-tuning problem on #: strong-CP problem
—> new physics beyond Standard Model to explain it (Peccei-Quinn axion)
Theory

e () breaks the U(1)a flavor symmetry through anomaly = large mass of 7’
meson. Physics of the i’ related to QCD #-dependence in the ideal limit of large
number of colors: N. — 0o

e A non-vanishing 6 changes the QCD vacuum = Does ¢ change the confining
properties of strong interactions? How and why?

e O-dep. in 2d theories: e.g., 2d CPY~! models, 2d U(N) Yang Mills, ...
Extensively studied in the large-N limit (analogy with large N.)
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Topology and the axial anomaly

At energy scales < A but > m,,, mq ~ my, lightest quark masses are small
perturbation of massless QCD. Massless QCD enjoys a global flavor chiral symmetry:

G=SU2)L®SU2)r®@U(1)y @ U(1)a
The U(1)a classical invariance is anomalous (functional measure not invariant) ==

not a symmetry of the quantum theory! (t "Hooft, PRL 37, 1976)
Anomaly proportional to the gluon topological charge:

YL — e *Pr

Cia = DYDy - DyDye "¢
Yr € YR

L G(myp=0) Lo(mp=0) oy
/DJD’(/JDA@ZSQC{D +i60Q /DE’D’(#’DA@LSQC{D +19Q612N*IL¥Q

U(1)a
(mf=0) (ms=0)
= SQC{D (9) U*)(1>A SQCJ;D (0 +2Nya)

This means that, in the chiral limit, QCD is #-independent because of the axial
anomaly, as the f-term is reabsorbed via quark field redefinition: oo = —6/(2Ny).

This apparently seems in contradiction with the expected behavior
of QCD when the number of colors N — oo.
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The large-N limit of QCD

Let us consider the 't Hooft limit N — oo (N fixed) with g2 N = X constant:

2
glloop(lu‘) o 3 2 i . 0
i N — e oed) Y SO\ ) AN o).

At large-N the loop-diagrammatic expansion of QCD can be systematically
rearranged in powers of 1/N (non-perturbative in A) (t "Hooft, NPB 72, 1974)

e Leading order: Purely-gluonic planar diagrams

e Sub-leading order: planar diagrams with one quark line, suppressed as 1/N.

APPARENT CONTRADICTION — U(1)s PUZZLE

e m; — 0 at fixed IV:
QCD becomes #-independent in the chiral limit because of the anomaly for
any fixed value of N. Cancellation due to dynamical quark contribution.

e N — oo at fixed my:
quark loops are suppressed compared to the gluonic contribution —
quarks decouple, QCD becomes pure-gauge theory in the large-IV limit

How can anomaly cancel 6-dependence at large-N in the chiral limit?
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Phenomenological role of the topological susceptibility

Key quantity to solve the U(1)a puzzle: the topological susceptibility x

g2

@= 3272 /d4x5#upo Tr [GH (2)GP? (z)] = /d4z q(z)

The topological susceptibility can be seen as the leading “response” of the QCD
partition function when a #-term is turned on:

Zqcp @ 00 X92
Z ooy (€ =T
Zqcen(0) (o0 2
=—> x = 0 in the chiral limit!
d?Z 0
X %U = 0 because Zqcp is #-independent when m; — 0
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WittenVeneziano solution to U(1)s puzzle

Large-IN expansion of topological charge density correlator:

Gaeo?) = [ dae™ (qla)q0)
Gaon(®) =  Gyvul®d) - 3 Q'ﬁip L0 (1N

2
n
nl?

|4,
p2 =0 = Xqep — Xym — Z )

mesons n
O(NY): pure-Yang-Mills contribution x.,,
O(N~1): contribution of mesonic state propagation: m2 ~ N°, |A,|> ~ N1

Solution: there is a meson state (') with m? ~ O(1/N) which cancels
pure-gauge contribution to x ¢, (Witten, NPB 149, 1979; Veneziano, NPB 156, 1979)
2/, 2 2/, 2 0
0 0 Xaep = Xym — |A77’| /mn’ = Xym = |A7l'| /mn’ ~ O(N").

|A77"2 = Ffmfy/fi = Xymu = Fgm%’/G

1’ massless Nambu-Goldstone boson not in the chiral but in the large-N limit!
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Large-N 6-dependence of Yang—Mills vacuum energy

Witten—Veneziano + general arguments constrain #-dependence of vacuum energy:

E0) = —% log {gixgg” E(9) = %x@z(l + ba0% + ba6* +. )
Y= <C‘2/> - by — _%(Q ><—Q?2>><Q ) - bam o (Q*"),

o 0Q x 0g%c o Tr(G*YGP7) ~ O(MNO/N) = actual expansion parameter: /N

e E ~ O(N?) (number of color degrees of freedom)

0
= E(0.N) ~_ N%f (N) (Witten, PRL 81, 1998)

Witten—Veneziano requires: Xy, (N) =X,,, + O(1/N?), Xy ~ O(N?)
= 52 2 2n
— ba(N) = 51+ O(1/N?) (an(N) LN )

How to check this scenario? #-dependence intrinsically non-perturbative
=—> Needs non-perturbative first-principle methods: lattice numerical approach
What are the main difficulties found using this approach?
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pology freezin

P o e~ °E sampled with Monte Carlo methods to obtain representative ensemble {O;} —
_ IDee=SEBlO[g)
(O = pgesem
Approaching the continuum limit, customary algorithms experience Topological Freezing —
machine time needed to generate representative ensemble of Q grows exponentially.
Severity increases at large N.

obtained from ensemble mean.

Parallel Tempering on Boundary Conditions
N =3, a~0.056 fm~~ (3.5 GeV)~ Proposed in (Hasenbusch, 2017 [1706.04443]) for 2d cpiN—L.
— —— First applied to 4d SU(N) in (CB et al., 2021 [2012.14000]).

sl ]
o 1 N =6, a ~0.089 fm ~ (2.2 GeV) !
| !
o = ,
2 - -
e -
“r ] 0
o 1 .
S ] SN
1053005000 6000 5000 10000 T3
Traj .
. ! _ parallel tempering
N =3, a~0.039 fm ~ (5.1 GeV) —--- standard update
T T T T —6
8 0 10000 20000 30000 40000 50000 0 1000
of ] MC updates
i ] Combine simulations with periodic and open boundaries.
o o 1 Open: @ fluctuates a lot because is no more constrained to
2 be integer, but boundaries introduce systematics.
“r 1 Periodic: @ is measured with periodic boundaries, where
ﬁi, 9 unphysical effects due to the open boundaries are avoided.
: —— —— Simulate simultaneously systems with varying boundary
2000 4000 6000 8000 10000 120

conditions with swaps of configurations and take best of
both worlds!
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Higher-order cumulants and imaginary-6 simulations

Sg,E) = Sg—o +10Q = at non-zero 6 the Euclidean action is complex

— sign problem, no Monte Carlo simulations

Imaginary-60 simulations: sign problem avoided through analytic continuation, 6 = 0;.

d"E 0
S—S+0,Q, 0;=ib = kn = kn(61) = (Q™)., (61) o %(’) J
1
x10°° Further benefits:
8 T kv
3 kv e coupling @ to the action acts as a source
p T kv term and improves signal-to-noise ratio.
1 3
e Imaginary-0 fit = extract x and b2
n from combined fit of #r-dependence:
]
=5
= m‘ré
2 == 9 07) = x(0r — 200 +..)
2y 2
P I CELC PN
04 I}Z{I‘“I“ E s
0 6 12 18 0 60L12 18 0 6 12 18 @(9,) = x(—12b20; +...)
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Large-N limit of y from the lattice

0.035
0.030+
Parallel Tempering +
~ Imaginary-6
% 0.025
CB, Bonati, D’Elia, JHEP
03 (2021) 111
0.0201 [arXiv:2012.14000]
0.015 , : —
) 1/6 1/42 1/3

1/N?
5 . . 1/4 ~, y 2
WittenVeneziano: x1/4 ~ 180 MeV + O(1/N?)

Lattice: xyy /02 = 0.0199(10) 4 0.08(2)/N?
9 2 g 1/4
Jim iy, /o* =0.0199(10) = ngnooXY/M = 173(8) MeV
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Large-N limit of by from the lattice

0.000
—0.005
0,010/ Paralllel Tfampering +
maginary-6
—0.0151 CB, Bonati, D’Elia, JHEP
03 (2021) 111
—0.0201 [arXiv:2012.14000]
—0.025 T - .
0 1/6 1/4 1/3
1/N
Large-N prediction: by = by /N2 + O(1/N*%)
1) by = by /N7 — v = 2.17(26)
2) by = by /N? — by = —0.193(10)
8) by = by/N2+ 7 /N* — B = —0.17(35)
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. . . {)
WittenVeneziano mechanism beyond p~ = 0

Witten—Veneziano mechanism assumes topological charge correlator to be
dominated by the p? = 0 behavior (topological susceptibility y)

ipe 1 [, .
GOP) = [ dae™® (q(a)0)) = x — 1P\ + 06, X =5 [ dhelef (a()a(0)
Gp?*=0)~G(p*=m ,) for the Witten—Veneziano mechanism to hold
= || < X/m bound on the topological susceptibility slope x’.

Using the 1/N expansion of G(p?) at large-N (CB, JHEP 01 (2024) 116 [2311.06646]):

Xow _ [lim Xooo | | I3

+ 5 =~ (12 MeV)?

>

N m—0 N

= X'/N ~ O(N°) at large N

The numerical value of this prediction was obtained using;:
F2/N ~ [55(5) MeV]® (lattice large-N result, Garcia Pérez et al., 2020 [2011.13061])
lim X/ = —[32.8(2.4) MeV]? (Chir. Pert. Theo., Leutwyler, 2000 [hep-ph,/0008124])

m—0
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First reliable lattice determination of x’ in SU(3)

9 x10~3
¢  Final result .
3] ,{% § i Main problem: correlators
-] computed after smoothing to reduce
noise. Sources are smeared up to
61 : .
radius 75 (gsmear(%)gsmear(0))-
51 .
= Correlator unphysical for r < r;
4 —> using smeared correlators
31 introduces a dependence of X’ on ;.

Strategy: compute continuum limit
14 at fixed rg, then take ry, — 0
(CB, JHEP 01 (2024) 116 [2311.06646])

0.0 0.2 0.4 0.6 0.8
ool /13

X' (N = 3) = [17.2(2.1) MeV]?
From same simulations: x(N = 3) = [200.4(3.6) MeV]*
= x'/(x/m2/) ~0.16 = supports Witten—Veneziano mechanism

X'/N|n=3 = [10.0(1.2) MeV]?
remarkably close to our large-N estimate limy o0 X'/N =~ (12 MeV)2.
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Confinement in the large-N limit

The ’t Hooft large-N limit assumes g2 ~ O(1/N), meaning that A ~ O(N?).
This assumes confinement to survive the large-N limit.

At 0 = 0 well-verified assumption from the lattice.

e Dynamically-generated scale: Agg(N = o0)/y/0 = 0.515(3)
(Gonzalez-Arroyo & Okawa, 2013 [1206.0049])

e Critical deconfinement temperature: T.(N = 00)//c = 0.595(2)
(Lucini et al., 2012 [1202.6684])

0.56 T T T T T ‘
055 | . . °
06 o mmE ST B
0.54 1
Bs os3t } 1 Too |
052 F e _{:}[ i
SU(N) —— o2 1
0.51 r TEK N=841 )
o5 L0150 + 03401V, —— R
0 0.02 0.04 0.06 0.08 0.1 0.12 ®To s or o ez om

1IN
1

e
Relevant issue: what happens to confinement at non-vanishing 67

C. Bonanno Aspects of topology and confinement in large-N gauge theories 14/05/24 14/18



The deconfinement transition at non-vanishing 6

Vacuum Energy (7' = 0) — Free Energy (finite-T")
F(T,0) = f(T,0) + 3x(T)0° + ...
f(T,0) = f(T.,0) + T5r=e + ...

e Deconfinement transition is first order (N > 2).
o If still first order at non-zero 6, at T.(6) equal free energies in the two phases.
Imposing fc(7%(6),60) = fa (T.(0),60) we have: (D’Elia et al., 2012 [1205.0538])
_1Ax(6=0)
T2 LO=0) "

T.(0) = T.(0)[1 — R&*> + O(8")], R

10"

e R related to properties of the 6 = 0 transition: 3 i:f\f;}wwwl
Ax=x.—Xd, L=¢€q—¢€ (Latcnt Hcat) §  This Work
o L ~ O(N?) (number of degrees of freedom)

e xc ~ O(N°) (Witten—Veneziano)

/Tt

- 107!

d

X

o Xa~ e N(OBetal, 200 12.02202) | e
= R>0~ O(1/N?)
= T, slightly reduced at non-zero 6 1021
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Large-N 6-dependence of T, from the lattice

N = 3: deconf. transition exists at small-0 and is first-order (D’Elia et al., 2013
[1306.2919]), and imaginary-0 shows reduction of T, (D’Elia et al., 2012 [1205.0538]).

Predicted relation R = Ax/(2L) holds for N = 3 (Borsanyi et al., 2023 [2212.08684]).

N > 3: using parallel tempering + imaginary-6, we can show that this scenario
remains true also in the large-/N limit (CB et al., 2024 [2312.12202])

N=4 0.025
0.67 - — | 1/N? fit (latent heat)
""" Q""‘l""”f fit. 0r <25 S [0 1/N? fit (imaginary-0)
~== Quartic fit, 67 <25 0020 @ Latent heat — [arXiv:2212.08684]
0.66 Quadratic fit, 0 < 2 ®  Latent heat — This work
y $  Imay 6 — [arXiv:1205.0538]
0.65 0015 @ Tmaginary- — This work
S ' &
061
f 0.010
0.63
0.005
0.62 o
o T /_’_,.r"
0.000 F—ee==
0.0 0.5 1.0 1.5 2.0 2.5 0 1/6 1/4 1/3
0 1/N
e From imaginary-6 fit e From latent heat perfectly agreeing
R=R/N” — ~=2.20(24) results: R =0.177(14).
=, s :
R=R/N° — R =0.159(4) The lattice thus fully confirms:

R=2 +E2 L RY Z022025)  R=Ay/(2L) = R/N? + O(1/N*)
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The #-dependence of SU(N) Yang—Mills spectrum from the lattice

String tension and mass of lightest glueball state G (G(6 = 0) = 07 1) are found to
decrease with 0 (parallel tempering + imaginary-0) (CB et al., 2024 [2402.03096])
= perfectly fits with picture of reduction of confinement scales at non-zero 6

046

044

mG(G) = m0++(1 +m262 4 .. .),

me IWQ/NQ, S92 :§Q/N2.
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Lattice result: m2 < 0, 52 <0
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0-dep. not cancels in dimensionless ratios:

R

R

0.595(2) — 0.044(2) (

3.07(2) — 0.041(21) (
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Conclusions and take-home messages

e Combining Parallel Tempering + imaginary-0 it is possible to accurate study
0-dependence at large-N on the lattice beyond leading order

e At large-N and at non-vanishing (small) 6 the lattice confirms effective
dependence on /N, and expected large-N scaling already holds for N > 3

e At large-N the confined phase survives: all confining scales have finite large-IN
limit. With non-vanishing (small) 6 confinement is “reduced” but not lost

e Above scenario confirmed by decrease of 7., o and my++ at non-zero . Leading
O(6?) corrections are O(1/N?) for these quantities

e Lattice results for y and x’ support the large-N Witten—Veneziano mechanism,
and show that N = 3 is remarkably “close” to N = oo

Some future outlooks

e N = 3 result for x’ very close to large-N prediction. Lattice large-N investigation?

e Recently, we showed that large-N limit of chiral condensate is very close to N = 3
value using large-N twisted volume-reduced models [1-site lattice but
N ~ O(100)] (CB et al., 2023 [2309.15540]).

Chiral-symmetry restoration temperature at large N? How does it compare with
deconfinement one?

C. Bonanno Aspects of topology and confinement in large-N gauge theories 14/05/24 18/18



BACK-UP SLIDES




C. Bonanno Aspects of topology and confinement in large-N gauge theories 14/05/24

Continuum limit of by in SU(2) Yang-Mills theory

10207

0.8

:

0.4H

by

[)‘UOAO 0.2 0.4 0.6 0.8 1.0

oa? x1072
By (0) — By (0) = 2x0%(1 + b26? + bs0* +...)
N =2: by = 6(2) - 10~* (CB et al., 2019 [1807.11357])
N =3: |bg| $4-107% (Bonati et al., 2015 [1512.01544])

Holo. Yang—Mills: by ~ 0.033/N* (using BS““CE)) (Bigazzi et al., 2015 [1506.03826])
— WM =2) ~ 21073 ~ 330" (N = 2)
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Euclidean topological charge density 2-pnt correlator

G(z) = [d*z (q(z)q(0)) < 0 for any r = |z| > 0 because of reflection positivity.
Reflection positivity: (©[0(0z)]O(x)) > 0 for any operator O
© = Euclidean time reflection + complex conjugation

Since ¢(z) is T and P odd = G(z) < 0 for r > 0.

e Perturbation theory: G(z) ~ —C?/(r®log?r) for short distances r < 1
(Vicari, 1998 [hep-lat/9901008])

o G(z) ~ —Aexp{—mr} for large distances r > 1, with m mass of lightest state in the
PC = —+ channel (JLQCD Collaboration, 2015 [1509.00944])

However: [d'z G(z) = x = (Q*) /V > 0. How to reconcile with reflection positivity?

= G(z) has a positive non-integrable singularity in = 0 due to a contact term
which cancels the negative divergent integral lim._,o fr>5 d*z G(x). The residue of such
cancellation is the positive and finite topological susceptibility.

Similar arguments apply to x’ « [ d*z G(z)|z|?, which is finite too. Due to |z|
promoting the long-distance tail and depressing the contact term, x’ can be either
positive or negative, and does not vanish in the chiral limit (unlike x).
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