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Regge Trajectories Models
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Regge Trajectories Models

Linear Regge trajectory
Strings rotating ends with lightspeed

Mass and angular momentum for homogeneous strings
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Regge Trajectories Models

Energy-Angular Momentum limit

two massless quarks orbit, interacting by a linear potential

Meson mass =~ total energy = kinetic + potential:

M = 2|p| +2x|r| = 2+/2k]|r|-2|p|

It follows for the angular momentum
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Regge Trajectories Models

Nonlinearity in Regge trajectories

a(s) = J/M? is not constant

Collison of equal mass particles in CMS:

p1 = (v8/2,G/2) p2 = (v/5/2,-G/2)

With impact distance parameter b, orthogonal to g:

J=2 bq = —bq by/'s — 4m?

22
Several of such threshold contributions deliver another Regge law:

als) = A= cvVs—s+...
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Regge Trajectories Models

Many threshold «(s) model

Saturation of Re « and N(m)

a(s) = A—Zc,-\/s,-—s—i-... = iZc,-m

Si>$S S5i<Ss
The higher s the more terms in the Im part of the sum.

Mass density

p(m) = ™/ TH diRea( m?) = &M/ TH Z Sl

s>m2 V7 Vs — P

Max s; taken — max m? fixed — p(m) = 0 above — N(m) saturates.

Re « also staurates, after the highest s; is surpassed.
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Regge Trajectories Models

High energy tail properties

What a spectrum are we describing?

@ Below the saturation of Re «, the exp factor dominates,
N(m) exponentially grows.

@ Tma(m?) grows like m beyond the highest s;.

@ That means increasing widths of resonances; ending with
a continuum.

@ An overall positive Rea > 0 version (Jenkovszky)

’
1+1Y6vsi—s

a(s) =

Szanyi, Bir6, Jenkovszky, Libov Melting Resonances



Regge Trajectories Models

Experimental Mass Spectrum

for linear Regge trajectory model

Linear particle trajectories

Plot of spins of families of particles against their squared masses:
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Regge Trajectories Models

Number of resonances below m

In the many threshold modified model
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Regge Trajectories Models

Unitarity: "optical” theorem

amplitude, cross section, form factor

S matrix and T matrix: S=1+iT, |out >= S|in >
Unitarity: SST = (1 +iT)(1 —iTt) = 1+ TTt +i(T - TT) = 1
Consequence: TTT = (Tt — T)=2ZmT.

Geometrical scaling (GS), saturation and unitarity
1. On-shell (hadronic) reactions (s,t, Q*2=m"2);

In terms of cross sections: t = b transformation: (s, b) = [§° dy/~Ty/~A(s, 1)

and dictionary:
ik ikr
lout >= ek + £ f(Q)

doldt

% = IQ)P

absorptions

Gaussian
__ 4r
oo = -1(0)

b
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Regge Trajectories Models

Reggeon (Pomeron, Odderon)
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Thre

formula

Regge Trajectories Models

shold Behavior

Specifically, Ref. [33] defines trajectories as
als) =i — Z Vi'Si — S, (10)

where all two-particle stable thresholds are included in the
sum. For the p-meson trajectory, two meson-meson and four
baryon-antibaryon channels are taken into account, as listed
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Regge Trajectories Models

Threshold Behavior
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Counting Resonance States
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Counting Resonance States

Hagedorn Mass Spectrum Forefactor

Deriving p(m) ~ m?

It was suggested in Refs. [20-22] that for fixed isospin
and hypercharge a cubic density of states, p(m) ~ m?, fits the
data. Moreover, as argued in Ref. [20], the cubic spectrum
can be related to collinear Regge trajectories. Indeed, follow-
ing the arguments of Burakovsky [23], on a linear trajectory
with negative intercept, a(f) = o't — 1, some integer values
of w(r) = J correspond to states with negative spin, J = a(t;),
with squared masses m?(J) = t;. Since a spin-J state has mul-
tiplicity 2J + 1, the total number of states with spin0 < J < j
att = m(j)? is given by

i
N =D @I+ =G+ =am*(). 3
J=0
Hence, the density of states per unit mass interval is obtained
as the derivative of this cumulative quantity,

AN om) = 4o’ m? 4)

p(m) =

dm

and it grows as the cubic power of the mass. Consequently, for
a finite number of collinear trajectories, N, the corresponding
mass spectrum is given as
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Counting Resonance States

Number of resonances with mass below m

Saturation

— WNieor | -
=== Ntheor (€Xponent only) /’,
—— Experimental Spectrum Ney, ,/
103 e
] ! i o |
| %
T 102 7
= i
10!
100 £11 ! ! !
0.0 0.5 1.0 1.5 2.0 2.5 3.0
m (GeV)

ird, Jenkovszky, Libov Melting Resonances



Inside the proton
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Inside the proton

Inside the proton

mass, spin and pressure

(0’| Tur (0)lp) = T(p") [M + J + D] u(p),
with P= (p+p')/2, A=p' —pand t = A? s = 4P

mass term

Puove + P, )
spin  term J= J(t)% iAP
N
pressure term (t) Mg“ L
N
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Inside the proton

Generalized Parton Distribution

scatterer distribution in space

_ o
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Figure 1: Diagram of deeply virtual Compton scattering (DVCS) with QCD factorizatic
separating nonperturbative "soft" and perturbative "hard" dynamics.

Jen

hreal
shown in the diagram, Fig

10
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Figure 3: Typical pattern of high-cnergy proton-proton elastie differeni
{a) and of the cortespondiug proton profile. its F-B huage (b). The small
is a consequence [19] of the threshold singularity in the trajectory
producing the proton atmosphere (right).
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Inside the proton

Pressure inside the proton

experimental cross sections
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Inside the proton

Pressure inside the proton
R.Fiore, L.Jenkovszky, M.Oleksiienko; arxiv 2112.00605

On matter and pressure distribution in nucleons

Io( Br q . 36 £\3
D(t) = 18 [ DUVD p(r)d®r,  Fittodata: D(t) ~ — 38 (1 - L
= D =D (1-vIE]* =
a |
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Figure 5: D(t) from CLAS 6 GeV data [3] Figure 6: The eury is the pressure distribution inside the proton

b
wecording o the for tix compatible with the experimental data [1]

Fit to pressure: p(r) = A(B — r)e="/2 with A= 1GeV/fm*, B = 0.6fm, a = 0.2fm.
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Inside the proton

Lattice QCD

measures pressure inside the proton

Pressure Distribution and Shear Forces inside the Proton
by P.E.Shanahan and W.Detmold.

Phys.Rev.Lett. 122 (2019) 072003

L.Of total

gluon cont.

- - -~ guark cont
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FIG. 2. (Left) Pressure distribution of the proton computed
using tripole parametrizations of the LQCD quark D-term GFF
and the LQCD gluon D-term GFF. The contributions from the
quark and gluon terms are represented by the purple dotted and
green dashed bands, respectively, while the total is denoted by the
orange solid band. (Right) The same quantities. determined based
on modified z-expansion parameltrizations ol the D-term form
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Relating to Quark Matter Thermodynamics
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Relating to Quark Matter Thermodynamics

Mass Spectrum Formula

at finite temperature too

M>

p=>_ gplm)= f “dm p(m) p(m),

M,

( )—szzK (m)
prm) = 272 )
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Relating to Quark Matter Thermodynamics

Improved (generalized) Bag Model

k

pressure and entropy density for p(m) ~ m

€ =f p(m)T 4 (m/TYdm = MT*, (13)
0

and obtain the corresponding pressure and sound velocity
square as follows:?

Ak
p —_—

— Tk+5
k+4

. A =1/k+4). (14)
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Relating to Quark Matter Thermodynamics

Mass Spectrum vs Pressure

Meijer—Bessel transformation

Féjl Szerkesztés Nézet El6zmények Koényvjelz6k Eszkézok Slgd

Meijer transform - Encyclopedia of Mathematics - Mozilla Firefox v ~Q

O & https://encyclopediaofmath.org/wiki/Meijer_transform 9 6 A

“The Meijer K - transform (or the Meijer-Bessel transform) is the integral transform

z

[ K (at) e f(0)dt.
2 e

P) =

Ifthe funciion J is locally integrable an (0, 5c), has bounded variation in a neighbourhood of the point = o > 0, and f the integral
/ e |f(t)dt, >a =0,
b

converges, then the following inversion formula s valid:

flta 1 0) + f(to —0) _
- 2,

iix
1 / 2
lim —= [ L(tx)(tex)"*F(z)da.
fii S = (toz) (tox)"*F ()
#in
For v = -£1/2 the Mefer K- transform turns into the Laplace transform.

The Meijer transform and Meijer K - transform were introduced by C.S. Mejer in [1] and, respectively,
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Relating to Quark Matter Thermodynamics

Lattice QCD EoS

Pressure — Mass Gap

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 32 (2006) S205-S212 doi:10.1088/0954-3899/32/12/S26

Equation of state for distributed mass quark matter

T S Biro, P Lévai, P Van and J Zimanyi
KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest PO Box 49, Hungary

E-mail: tsbiro@sunserv.kfki.hu
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Relating to Quark Matter Thermodynamics

Lattice QCD EoS

Pressure — Mass Gap

Here p(m) = +f(£) and p(T) = kT4o(%).

Meijer transform (g = T/ T) and inverse transform (t = m/ T;):

_ p(mT) N aG
o(g) = / plm)2 L am 0/ 109" Ke(gt) .

pss(T
f(1) = % / o(2) ’2(;) dz.

Here o = p/Pgg
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Relating to Quark Matter Thermodynamics

Lattice QCD EoS

Pressure — Mass Gap

@ e9.8 squares: numerical

;" back Meijer trf. from LQCD
E data
3.0 @ eq.15 cont. line: analytic
F formula
© eq.13 dashed line w dots:
A - pQCD to 4th order + LL
0 1 2 3 4 5 6
miT,
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Relating to Quark Matter Thermodynamics

Summary

@ Experimental Regge trajectories in fact are not linear ever.
@ Bag constant is not a constant, p(m) has an m® factor.

@ Pressure inside the proton changes sign — negative at
some temperatures.

@ Lattice QCD gm data hint for a mass gap in terms of ideal
gas eos.
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Relating to Quark Matter Thermodynamics

Appendix

Mandelstam Variables

For 2 — 2 collisions; last column: equal masses case.

s = (p1+P2)° = (Ps +pa)? = 2m° + 2E1 Ex(1 — cos O1p) > 4mP

t = (p1—ps)® = (P2 — pa)? = 2m° — 2E;E3(1 — cos ©13) < 0

u = (p1 —ps)’ = (P3—p2)’ = 2m° — 2E{E — 4(1 — cos©14) < 0
Adding all six terms:

2(s + t+ u) = 3(m + mj + m5 + M) + 2p1 P2 — 2P1P3 — 2P1Pa + 2P3Ps — 2PaPs — 2P2Ps3

2(s-+t+u) = 3(mh +mj +m3 +m3) +py (P2 — P3 — Pa) +P2(Pt —Pa — P3)+P3(Pa — Pt —P2)+Pa(P3 —P2 —Py)
2(s + t+ u) = 2(m? + ma + ms + m3).

Property: s+t + u = m2 + m3 + m3 + m3 = 4m?;

Szanyi, Bir6, Jenkovszky, Libov Melting Resonances



	Regge Trajectories Models
	Counting Resonance States
	Inside the proton
	Relating to Quark Matter Thermodynamics

