Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

György Baranka

Eötvös Loránd University Budapest

Based on arXiv:2104.03779 Work done in collaboration with Matteo Giordano

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

イロト イヨト イヨト イヨト

Introduction I

 Localisation of low modes of the Dirac operator was observed in QCD and other gauge theories above the deconfinement transition [Garcia-Garcia and Osborn, 2007, Ujfalusi et al., 2015]

Localisation and delocalisation from Ref. [Ujfalusi et al., 2015]

• Localisation of eigenmodes caused by disorder is a well-studied phenomenon in condensedmatter physics

Introduction II

- Low-lying Dirac modes in QCD at high temperature shares the same critical features with three-dimensional Hamiltonians with on-site disorder
- Sea/island picture → Ordered Polyakov loops in deconfined phase (deconfinement transition is the only thing that is needed). In this ordered "sea" modes are localised on the fluctuations of Polyakov loops [Bruckmann et al., 2011]
- To push the connection of these properties to its limit → Z₂ gauge theory in 2+1 dimensions and study the spectrum of the staggered Dirac operator, link variables: U_μ(n) = ±1, N_t fixed.

3

- $A_{\mu}(x)$ is replaced by parallel transporters $U_{\mu}(n)$
- The Wilson action reads

$$S[U] = -\beta \sum_{\substack{n \ \mu <
u \\ \mu <
u}} \sum_{\substack{\mu,
u = 1 \\ \mu <
u}}^{3} U_{\mu
u}(n),$$

where $U_{\mu\nu} = U_{\mu}(n)U_{\nu}(n+\hat{\mu})U_{\mu}^{*}(n+\hat{\nu})U_{\nu}^{*}(n)$

• Expectation value of an observable O is defined by

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}U \cdot e^{-\mathcal{S}[U]} O[U] = Z^{-1} \sum_{[U]} e^{-\mathcal{S}[U]} O[U], Z = \sum_{[U]} e^{-\mathcal{S}[U]}$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

3

イロン イロン イヨン イヨン

\mathbb{Z}_2 and \mathbb{Z}_3 gauge theory II

• The staggered Dirac operator reads

$$D_{nn'} = \frac{1}{2} \sum_{\mu=1}^{3} \eta_{\mu}(n) (U_{\mu}(n) \delta_{n+\hat{\mu},n'} - U_{\mu}^{*}(n-\hat{\mu}) \delta_{n-\hat{\mu},n'}),$$

where
$$\eta_\mu(n)=(-1)^{\sum_{
u<\mu}n_
u}.$$

• $D_{n,n'}$ is anti-Hermitian:

$$D_{n,n'}\psi_l = i\lambda_l\psi_l, \quad \lambda_l \in \mathbb{R}$$

•
$$\{\varepsilon, D\} = 0$$
 with $\varepsilon(n) = (-1)^{\sum_{\mu=1}^{3} n_{\mu}}$ implies

$$D\varepsilon\psi_I=-i\lambda_I\varepsilon\psi,$$

so the spectrum is symmetric about zero.

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

★ 문 → ★ 문 → _ 문

• The deconfinement transition is signalled by breaking of the symmetry

$$U_1(N_t-1,\vec{x}) \rightarrow zU_1(N_t-1,\vec{x}), \ \forall \vec{x} \ z \in \mathbb{Z}_n,$$

the relevant order parameter is the Polyakov loop. \rightarrow "physical" and "unphysical" sectors

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

イロト イポト イヨト イヨト

Sea/islands picture

- The Polyakov loop at $\vec{x} \to P(\phi(\vec{x}))$ with some phase $\phi(\vec{x})$.
- Assuming trivial spatial links and temporal links U, where $U^{N_t} = e^{i \cdot \phi}$ the eigenvalues are

$$\lambda = \sqrt{\sin^2 \omega + \sum_j \sin^2 p_j},$$

where $\frac{L\rho_j}{2\pi} = 0, ..., N_s - 1$ and $\omega = \frac{1}{N_t}(\pi + \phi + 2\pi k)$ with $k = 0, ..., N_t - 1$

• The lowest branch of eigenvalues reads

$$M(\phi) = \sin\left(\frac{\pi - |\phi|}{N_t}\right),$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

3

イロン イロン イヨン イヨン

Configuration in \mathbb{Z}_2 gauge theory

$$N_t = 4, N_s = 16, \lambda_1 = 0.008$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Configuration in \mathbb{Z}_2 gauge theory

$$N_t = 4, N_s = 16, \lambda_1 = 0.023$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

2

ъ

Localisation of eigenmodes of the Dirac operator

- IPR_I = $\sum_{n} |\psi_{I}(n)|^{4}$
- $\operatorname{PR}_{I} = \operatorname{IPR}_{I}^{-1}(N_{t}V)^{-1}$
- The fractal dimension makes quantitative the scaling with the volume:

$$\operatorname{PR}(\lambda, N_s) \approx c(\lambda) N_s^{\alpha(\lambda)-2}$$

Localised mode $\rightarrow \alpha = 0$ Delocalised mode $\rightarrow \alpha = 2$

$$\alpha(\lambda) = 2 + \log\left(\frac{\mathrm{PR}(\lambda, N_{s_1})}{\mathrm{PR}(\lambda, N_{s_2})}\right) / \log\left(\frac{N_{s_1}}{N_{s_2}}\right)$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

3

・ロン ・回 と ・ ヨ と ・ ヨ と …

Confined phase

 $\beta = 0.67$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Deconfined phase $(\overline{P} > 0)$

Both low and high modes are localised, bulk modes are delocalised

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Deconfined phase ($\overline{P} < 0$)

In the unphysical sector low modes are not localised, high modes remain localised.

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Fractal dimension of near zero modes

Fractal dimension drops to zero at the deconfinement transition $(\beta_c(N_t = 4) = 0.73107(2) \text{ [Caselle and Hasenbusch, 1996]})$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Sea/island picture of localisation

• How much of the wave function is localised on negative Polyakov loops?

$$\mathscr{P} = \sum_{x,t} P(x) |\psi(x,t)|^2$$

Delocalised modes:

$$\mathscr{P} \approx \frac{1}{VN_t} \sum_{x,t} P(x) = \frac{1}{V} \sum_x P(x) = \overline{P}$$

Localised modes:

$$\mathscr{P} \approx \sum_{(x,t)\in V_0} P(x) |\psi(x,t)|^2 \approx \overline{P}_{V_0}$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

문어 비용어

Sea/island picture of localisation, deconfined phase

For delocalised modes \mathscr{P} takes the value of the average Polyakov loops. However, for localised modes \mathscr{P} drops significantly

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Sea/island picture of localisation, confined phase

For localised high modes \mathscr{P} becomes much lower, while for delocalised modes \mathscr{P} is closer to \overline{P}

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

Sea/island picture of localisation, deconfined phase

Unphysical and physical sector, \mathscr{P} comparison in the deconfined phase

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Plaquettes encode dynamics. How do localised modes correlate with negative plaquettes?

$$A(n) = \frac{1}{2} \sum_{\substack{\mu,\nu=1\\\mu<\nu}}^{3} [4 - U_{\mu\nu}(n) - U_{\mu\nu}(n-\hat{\mu}) - U_{\mu\nu}(n-\hat{\nu}) - U_{\mu\nu}(n-\hat{\mu}-\hat{\nu})]$$

- $\mathscr{U} = \sum_{n} A(n) |\psi(n)|^2$ measures the average number of negative plaquettes touched by the modes
- $\widetilde{\mathscr{U}} = \sum_{A(n)>0,n} |\psi(n)|^2$ measures how much of the modes lives on sites touched by negative plaquettes

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

イロト 不得下 イヨト イヨト 二日

Localisation and negative plaquettes

Localised modes prefer to live in clusters of negative plaquettes

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

3

< ≣⇒

Localisation and negative plaquettes

For localised modes most part of the modes live on sites that are touched by at least one negative plaquette

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

Inertia tensor of the eigenmodes

• The shape of eigenmodes was studied by the inertia tensor

$$\Theta_{\mu\nu} = \sum_{n} |\psi(n)|^2 \left[\delta_{\mu\nu} \sum_{\rho} (n_{\rho} - \overline{n}_{\rho})_{P}^2 - (n_{\mu} - \overline{n}_{\mu})_{P} (n_{\nu} - \overline{n}_{\nu})_{P} \right]$$

- $\theta_1 \geq \theta_2 \geq \theta_3$ are the eigenvalues
 - $heta_1 > heta_2 pprox heta_3 \ o {
 m oblate shape}$
 - $\theta_1 \approx \theta_2 > \theta_3 \rightarrow \text{prolate shape}$
 - $\theta_1 \approx \theta_2 \approx \theta_3 \rightarrow \text{spherical modes}$
- The orientation of the mode is also obtainable compared to the temporal direction → φ₁, φ₂, φ₃

•
$$\theta_i \sim N_s^{\tilde{\alpha}_i}$$

György Baranka

3

・ロン ・回と ・ヨン ・

Inertia tensor of the eigenmodes-Confined phase

 $\beta = 0.69$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Inertia tensor of the eigenmodes-Deconfined phase

$$\beta = 0.75$$

Both low and high Dirac modes are localised.

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

Inertia tensor of the eigenmodes-Shape of modes

The quantity

$$\log \frac{\theta_2}{\theta_1} - \frac{1}{2} \log \frac{\theta_1}{\theta_3} = \frac{1}{2} \log \frac{\theta_2^2}{\theta_1 \theta_3}$$

measures the prolateness/oblateness of modes.

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

Inertia tensor of the eigenmodes-Shape of modes

The quantity

$$\log \frac{\theta_2}{\theta_1} - \frac{1}{2} \log \frac{\theta_1}{\theta_3} = \frac{1}{2} \log \frac{\theta_2^2}{\theta_1 \theta_3}$$

measures the prolateness/oblateness of modes.

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Inertia tensor of the eigenmodes-Orientation of modes-Confined phase

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

→ < ∃ →</p>

Inertia tensor of the eigenmodes-Orientation of modes-Deconfined phase

$$\beta = 0.735$$

Nontrivial for low modes.

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

• The staggered Dirac operator reads

$$D_{nn'} = \frac{1}{2} \sum_{\mu=1}^{3} \eta_{\mu}(n) (U_{\mu}(n) \delta_{n+\hat{\mu},n'} - U_{\mu}^{*}(n-\hat{\mu}) \delta_{n-\hat{\mu},n'}),$$

where
$$\eta_{\mu}(\textbf{\textit{n}}) = (-1)^{\sum_{
u < \mu} \textbf{\textit{n}}_{
u}}.$$

• The lowest branch of eigenvalues reads

$$M(\phi) = \sin\left(\frac{\pi - |\phi|}{N_t}\right),$$

where now $\pi - \phi > \frac{\pi}{3}$

• Firs task \rightarrow finding β_c

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

э

イロト イヨト イヨト イヨト

Dual lattice

•
$$\mathbb{Z}_n$$
 gauge theories $\rightarrow U_l = e^{\frac{2\pi i \theta_l}{N}} \rightarrow S = \sum_p \left(1 - \cos\left(\frac{2\pi \theta_p}{N}\right)\right)$

- By Fourier-expanding each plaquettes and summing over configurations one can recast the partition function in term of spin-like variables
- We get the clock model

$$E = -\beta^* \sum \cos(2\pi(\theta_i - \theta_j)/n)$$

In the Potts-model

$$E = -\beta^{**} \sum \delta_{s_i s_j}$$

$$\beta^* = \frac{2}{3} \log \left(\frac{e^\beta - 2e^{-\frac{\beta}{2}}}{e^\beta - e^{-\frac{\beta}{2}}} \right)$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Binder cumulant and phase transition

Correlation length

$$\xi \sim |\beta - \beta_c|^{-\nu}$$

Near the transition

$$\phi(L,\beta-\beta_c)=\phi\left(\frac{\xi}{L}\right)=\tilde{\phi}(|\beta-\beta_c|L^{\frac{1}{\nu}})$$

- Then $\phi \approx F_0 + F_1 |\beta \beta_c| L^{1/\nu} + ...$
- I used the binder cumulant $\sim rac{\langle \phi^2
 angle^2}{\langle \phi
 angle^4}$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

3

・ロン ・回 と ・ ヨ と ・ ヨ と …

Binder cumulant

$$ightarrow eta^{**} = 0.5642(1)
ightarrow eta = 1.067(2)$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

2

э

Size of modes-Confined phase

Only high modes are localised

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Size of modes-Deconfined phase

Localised high and low modes

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

Fractal dimension-Deconfined phase

 $\mathrm{PR} \propto N_s^{lpha-2}$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

3

ъ

Fractal dimension-Deconfined phase

$$\mathrm{PR} \propto N_s^{\alpha-2}$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

æ

Sea/islands picture

$$\mathscr{P} = \sum P |\psi|^2$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

2

э

Sea/islands picture

$$\mathscr{P} = \sum P |\psi|^2$$

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

2

э

• Localisation of low modes is present in QCD and many gauge theories, even in \mathbb{Z}_2 which is the simplest gauge theory showing a deconfinement transition, and \mathbb{Z}_3 gauge theory, where potential well are less favourable

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

- Localisation of low modes is present in QCD and many gauge theories, even in \mathbb{Z}_2 which is the simplest gauge theory showing a deconfinement transition, and \mathbb{Z}_3 gauge theory, where potential well are less favourable
- Numerical results confirm the predictions of the sea/island picture of localisation in both theory

< ロ > < 同 > < 回 > < 回 >

- Localisation of low modes is present in QCD and many gauge theories, even in \mathbb{Z}_2 which is the simplest gauge theory showing a deconfinement transition, and \mathbb{Z}_3 gauge theory, where potential well are less favourable
- Numerical results confirm the predictions of the sea/island picture of localisation in both theory
- A novel result is that the very high modes are localized in both phases of the theory

3

イロト イポト イヨト イヨト

[Bruckmann et al., 2011] Bruckmann, F., Kovács, T. G., and Schierenberg, S. (2011).

Anderson localization through polyakov loops: lattice evidence and random matrix model.

Physical Review D, 84(3):034505.

[Caselle and Hasenbusch, 1996] Caselle, M. and Hasenbusch, M. (1996).

Deconfinement transition and dimensional cross-over in the 3d gauge ising model.

Nuclear Physics B, 470(3):435-453.

[Garcia-Garcia and Osborn, 2007] Garcia-Garcia, A. M. and Osborn, J. C. (2007).
Chiral phase transition in lattice qcd as a metal-insulator transition. *Physical Review D*, 75(3):034503.

György Baranka

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

- [Ujfalusi et al., 2015] Ujfalusi, L., Giordano, M., Pittler, F., Kovács, T. G., and Varga, I. (2015).
 - Anderson transition and multifractals in the spectrum of the Dirac operator of Quantum Chromodynamics at high temperature.

Phys. Rev. D, 92(9):094513.

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

3

・ロン ・回 と ・ ヨ と ・

Size of modes-Deconfined phase-Unphysical sector

György Baranka

Localisation of Dirac modes in finite-temperature \mathbb{Z}_2 and \mathbb{Z}_3 gauge theories on the lattice

æ