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Introduction I

• Localisation of low modes of the Dirac operator was observed
in QCD and other gauge theories above the deconfinement
transition [Garcia-Garcia and Osborn, 2007,Ujfalusi et al.,
2015]

Localisation and delocalisation from Ref. [Ujfalusi et al., 2015]
• Localisation of eigenmodes caused by disorder is a well-studied

phenomenon in condensedmatter physics
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Introduction II

• Low-lying Dirac modes in QCD at high temperature shares the
same critical features with three-dimensional Hamiltonians
with on-site disorder
• Sea/island picture → Ordered Polyakov loops in deconfined

phase (deconfinement transition is the only thing that is
needed). In this ordered "sea" modes are localised on the
fluctuations of Polyakov loops [Bruckmann et al., 2011]
• To push the connection of these properties to its limit → Z2

gauge theory in 2+1 dimensions and study the spectrum of the
staggered Dirac operator, link variables: Uµ(n) = ±1, Nt fixed.
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Z2 and Z3 gauge theory I

• Aµ(x) is replaced by parallel transporters Uµ(n)

• The Wilson action reads

S [U] = −β
∑
n

3∑
µ,ν=1
µ<ν

Uµν(n),

where Uµν = Uµ(n)Uν(n + µ̂)U∗µ(n + ν̂)U∗ν (n)

• Expectation value of an observable O is defined by

〈O〉 =
1
Z

∫
DU·e−S[U]O[U] = Z−1

∑
[U]

e−S[U]O[U],Z =
∑
[U]

e−S[U]
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Z2 and Z3 gauge theory II

• The staggered Dirac operator reads

Dnn′ =
1
2

3∑
µ=1

ηµ(n)(Uµ(n)δn+µ̂,n′ − U∗µ(n − µ̂)δn−µ̂,n′),

where ηµ(n) = (−1)
∑
ν<µ nν .

• Dn,n′ is anti-Hermitian:

Dn,n′ψl = iλlψl , λl ∈ R

• {ε,D} = 0 with ε(n) = (−1)
∑3
µ=1 nµ implies

Dεψl = −iλlεψ,

so the spectrum is symmetric about zero.
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Z2 and Z3 gauge theory III

• The deconfinement transition is signalled by breaking of the
symmetry

U1(Nt − 1, ~x)→ zU1(Nt − 1, ~x), ∀~x z ∈ Zn,

the relevant order parameter is the Polyakov loop. →
“physical” and “unphysical” sectors

György Baranka

Localisation of Dirac modes in finite-temperature Z2 and Z3 gauge theories on the lattice 6 / 42



Sea/islands picture

• The Polyakov loop at ~x → P(φ(~x)) with some phase φ(~x).
• Assuming trivial spatial links and temporal links U, where
UNt = e i ·φ the eigenvalues are

λ =

√
sin2 ω +

∑
j

sin2 pj ,

where Lpj
2π = 0, ...,Ns − 1 and ω = 1

Nt
(π + φ+ 2πk) with

k = 0, ...,Nt − 1
• The lowest branch of eigenvalues reads

M(φ) = sin
(π − |φ|

Nt

)
,
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Configuration in Z2 gauge theory

Nt = 4, Ns = 16, λ1 = 0.008
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Configuration in Z2 gauge theory

Nt = 4, Ns = 16, λ1 = 0.023
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Localisation of eigenmodes of the Dirac operator

• IPRl =
∑

n |ψl(n)|4
• PRl=IPR−1

l (NtV )−1

• The fractal dimension makes quantitative the scaling with the
volume:

PR(λ,Ns) ≈ c(λ)N
α(λ)−2
s

Localised mode → α = 0
Delocalised mode → α = 2

α(λ) = 2 + log
(PR(λ,Ns1)

PR(λ,Ns2)

)/
log
(Ns1

Ns2

)
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Confined phase

β = 0.67
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Low modes and bulk modes are not localised, high modes are
localised
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Deconfined phase (P > 0)
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Both low and high modes are localised, bulk modes are delocalised
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Deconfined phase (P < 0)

In the unphysical sector low modes are not localised, high modes
remain localised.
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Fractal dimension of near zero modes
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Fractal dimension drops to zero at the deconfinement transition
(βc(Nt = 4) = 0.73107(2) [Caselle and Hasenbusch, 1996])
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Sea/island picture of localisation

• How much of the wave function is localised on negative
Polyakov loops?

P =
∑
x ,t

P(x)|ψ(x , t)|2

• Delocalised modes:

P ≈ 1
VNt

∑
x ,t

P(x) =
1
V

∑
x

P(x) = P

• Localised modes:

P ≈
∑

(x ,t)∈V0

P(x)|ψ(x , t)|2 ≈ PV0
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Sea/island picture of localisation, deconfined phase
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For delocalised modes P takes the value of the average Polyakov
loops. However, for localised modes P drops significantly
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Sea/island picture of localisation, confined phase
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For localised high modes P becomes much lower, while for
delocalised modes P is closer to P
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Sea/island picture of localisation, deconfined phase

Unphysical and physical sector, P comparison in the deconfined
phase
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Localisation and negative plaquettes

Plaquettes encode dynamics. How do localised modes correlate
with negative plaquettes?

A(n) =
1
2

3∑
µ,ν=1
µ<ν

[4−Uµν(n)−Uµν(n−µ̂)−Uµν(n−ν̂)−Uµν(n−µ̂−ν̂)]

• U =
∑

n A(n)|ψ(n)|2 measures the average number of
negative plaquettes touched by the modes
• Ũ =

∑
A(n)>0,n |ψ(n)|2 measures how much of the modes

lives on sites touched by negative plaquettes
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Localisation and negative plaquettes
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Localised modes prefer to live in clusters of negative plaquettes
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Localisation and negative plaquettes
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For localised modes most part of the modes live on sites that are
touched by at least one negative plaquette
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Inertia tensor of the eigenmodes

• The shape of eigenmodes was studied by the inertia tensor

Θµν =
∑
n

|ψ(n)|2
[
δµν
∑
ρ

(nρ− nρ)2
P − (nµ− nµ)P(nν − nν)P

]
• θ1 ≥ θ2 ≥ θ3 are the eigenvalues

• θ1 > θ2 ≈ θ3 → oblate shape
• θ1 ≈ θ2 > θ3 → prolate shape
• θ1 ≈ θ2 ≈ θ3 → spherical modes

• The orientation of the mode is also obtainable compared to
the temporal direction → ϕ1, ϕ2, ϕ3

• θi ∼ N α̃i
s
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Inertia tensor of the eigenmodes-Confined phase

High modes are localised in all directions.
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Inertia tensor of the eigenmodes-Deconfined phase

Both low and high Dirac modes are localised.
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Inertia tensor of the eigenmodes-Shape of modes

The quantity

log
θ2
θ1
− 1

2
log

θ1
θ3

=
1
2

log
θ2
2

θ1θ3

measures the prolateness/oblateness of modes.
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Inertia tensor of the eigenmodes-Shape of modes

The quantity

log
θ2
θ1
− 1

2
log

θ1
θ3

=
1
2

log
θ2
2

θ1θ3

measures the prolateness/oblateness of modes.

György Baranka

Localisation of Dirac modes in finite-temperature Z2 and Z3 gauge theories on the lattice 26 / 42



Inertia tensor of the eigenmodes-Orientation of modes-Confined phase
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Inertia tensor of the eigenmodes-Orientation of modes-Deconfined
phase

Nontrivial for low modes.
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Z3 gauge theory

• The staggered Dirac operator reads

Dnn′ =
1
2

3∑
µ=1

ηµ(n)(Uµ(n)δn+µ̂,n′ − U∗µ(n − µ̂)δn−µ̂,n′),

where ηµ(n) = (−1)
∑
ν<µ nν .

• The lowest branch of eigenvalues reads

M(φ) = sin
(π − |φ|

Nt

)
,

where now π − φ > π
3

• Firs task → finding βc
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Dual lattice

• Zn gauge theories→ Ul = e
2πiθl
N → S =

∑
p

(
1− cos

(
2πθp
N

))
• By Fourier-expanding each plaquettes and summing over

configurations one can recast the partition function in term of
spin-like variables
• We get the clock model

E = −β∗
∑

cos(2π(θi − θj)/n)

• In the Potts-model

E = −β∗∗
∑

δsi sj

•

β∗ =
2
3

log

(
eβ − 2e−

β
2

eβ − e−
β
2

)
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Binder cumulant and phase transition

• Correlation length
ξ ∼ |β − βc |−ν

• Near the transition

φ(L, β − βc) = φ
( ξ
L

)
= φ̃(|β − βc |L

1
ν )

• Then φ ≈ F0 + F1|β − βc |L1/ν + ...

• I used the binder cumulant ∼ 〈φ2〉2〈φ〉4
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Binder cumulant

→ β∗∗ = 0.5642(1)→ β = 1.067(2)
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Size of modes-Confined phase

Only high modes are localised
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Size of modes-Deconfined phase

Localised high and low modes
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Fractal dimension-Deconfined phase

PR ∝ Nα−2
s
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Fractal dimension-Deconfined phase

PR ∝ Nα−2
s
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Sea/islands picture

P =
∑

P|ψ|2
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Sea/islands picture

P =
∑

P|ψ|2
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Conclusion

• Localisation of low modes is present in QCD and many gauge
theories, even in Z2 which is the simplest gauge theory
showing a deconfinement transition, and Z3 gauge theory,
where potential well are less favourable

• Numerical results confirm the predictions of the sea/island
picture of localisation in both theory
• A novel result is that the very high modes are localized in both

phases of the theory
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Size of modes-Deconfined phase-Unphysical sector
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