Lattice Gauge Theory group

GPU Research Center We are the lattice gauge theory group at the Eotvos University in Budapest, part of the Department of Theoretical Physics at the Faculty of Science. Since 2011 we are an NVIDIA GPU Research Center.

Currently there are nine members and we are seeking new ones. Positions are available for PhD students and postdocs for 2 - 4 years appointments. If you are interested please email Sandor Katz at katz {at} bodri {dot} elte {dot} hu or Daniel Nogradi at nogradi {at} bodri {dot} elte {dot} hu.

Our activities are and were funded by various funding agencies for which we are grateful, these include the Lendulet grant of the Hungarian Academy of Sciences, the OTKA-NF-104034 grant of OTKA and the EU Framework Programme 7 grant (FP7/2007-2013)/ERC No 208740.

Research

Our primary interests are:

  • Chiral symmetry restoration and deconfinement in QCD with Wilson fermions
  • Finite chemical potential
  • QCD hadron spectrum
  • Eigenvalue distributions of the overlap Dirac operator
  • Strongly interacting Higgs sector - strong dynamics
  • Conformal gauge theories

Seminar

Weekly ELFT seminars at the Department of Theoretical Physics

Location: 2nd floor, 2.54, Novobatzky room, 1117 Budapest, Pazmany Peter setany 1/a

Time: Wednesdays at 14:15

See the archive for seminars in past years.


  • 13 February 2019, Andras Laszlo (Wigner-MTA)

    General Relativity experiment with spin polarized particle beams slides

    In experimental proposals published in the last two decades, a so called frozen spin storage ring concept emerged, for setting upper experimental bounds to electric dipole moment (EDM) of charged elementary particles with spin. In a recent paper of ours (Class.Quant.Grav.35(2018)175003), a fully covariant general relativistic (GR) calculation was presented on the Earth's gravitational modification effect on the spin transport inside such a frozen spin storage ring. It turns out that in certain configurations, Earth's gravity is expected to produce a similar order of magnitude effect as the aimed EDM sensitivity, and thus it becomes kind of realistic to experimentally see this GR effect. If such an experiment could be conducted, it could provide a novel test of GR: with microscopic particles, at relativistic speeds, along non-geodesic (forced) trajectories, and the tensorial nature of GR would be at test, not merely the gravitational drag. In more technical terms: the GR correction to the so called Thomas precession could be tested in lab. For details on the experimental idea, we refer to: arXiv:1901.06217 (Proceedings of Spin2018 Conference).

  • 20 February 2019, Ferenc Pittler (Bonn)

    A novel mechanism for dynamical generation of elementary fermion masses

    The Standard Model (SM) is very successful in describing a plethora of low energy phenomena, however it is unable to explain the electro-weak scale naturalness and the fermion mass hierarchy problem. In this talk we numerically verify an intrinsically non-perturbative mechanism for elementary fermion mass generation advocated in 1402.0389 using lattice QCD techniques. This mechanism takes place in non-Abelian gauge models if fermionic chiral symmetries are explicitly broken at the UV cutoff scale and an exact invariance acting on both fermions and scalars forbids power divergent fermion mass corrections. We argue that a complete, composite Higgs-like beyond SM (BSM) scenario can be built using this mass generation mechanism. We also discuss differences-similarities with respect to the current BSM models studied with lattice simulations.

  • 27 February 2019, Mate Csanad (Eotvos)

    TBA

    TBA

  • 6 March 2019, Koushik Mandal (Eotvos)

    TBA

    TBA

  • 13 March 2019, Ruchi Chudasama (Eotvos)

    TBA

    TBA

  • 20 March 2019, Antal Jakovac (Eotvos)

    Bound states in quantum field theory: an FRG study

    In the talk we review the traditional approaches to define bound states in quantum theories. In the example of QED with two oppositely charged fermionic fields, we demonstrate the construction of an effective model that contains bound states, and which reproduces the fermionic observables of the original model. Using numerical analysis in the nonrelativistic limit, we argue that considerable simplifications can be made, still maintaining a reasonable accuracy in the computation of the ground state energy.

  • 12 April 2019, Slava Rychkov (IHES, Ecole Normale Superieure Paris)

    TBA

    TBA

  • 24 April 2019, Laurent Lellouch (CNRS Marseille)

    TBA

    TBA

For students

Our group offers TDK, diploma and PhD topics in Lattice Field Theory.

Please contact Sandor: katz {at} bodri {dot} elte {dot} hu
or Daniel: nogradi {at} bodri {dot} elte {dot} hu
in case you are interested.

Current topics include:

  • QCD thermodynamics
  • SU(N) gauge theory with topological lattice action
  • O(3) non-linear sigma model with topological term
  • Beyond Standard Model - technicolor

People

Matteo Giordano

assistant professor

2009 PhD - University of Pisa, Italy

2010-2010 postdoc - IPhT/CEA-Saclay, France

2010-2012 postdoc - University of Zaragoza, Spain

2012-2015 postdoc - ATOMKI, Debrecen, Hungary

2015-2018 postdoc - Eotvos University, Budapest, Hungary

Kornel Kapas

PhD student

2018- Eotvos University, Hungary

 

 

 

 

 

 

 

 

Sandor Katz

professor

2001 PhD - Eotvos University, Hungary

2001-2003 postdoc - DESY, Hamburg, Germany

2003-2005 postdoc - University of Wuppertal, Germany

2006-2012 assistant professor - Eotvos University, Hungary

2012- professor - Eotvos University, Hungary

Daniel Nogradi

assistant professor

2005 PhD - University of Leiden, the Netherlands

2005-2007 postdoc - University of Wuppertal, Germany

2007-2009 postdoc - UCSD, USA

2009-2011 senior research fellow - Eotvos University, Budapest

2011 assistant professor - Eotvos University, Budapest

 

 

Attila Pasztor

postdoc

2015 PhD - Eotvos University, Hungary

2016-2018 postdoc - Wuppertal University, Germany

2018- postdoc - Eotvos University, Hungary

Lorinc Szikszai

PhD student

2016- Eotvos University, Hungary

 

 

 

 

Zoltan Varga

PhD student

2018- Eotvos University, Hungary

 

 

Former members

Gergely Endrodi

2009 PhD - Eotvos University, Hungary

2010-2015 postdoc - University of Regensburg, Germany

2016- Emmy Noether group leader - University of Frankfurt, Germany

Tamas Kovacs

1996 PhD - UCLA, USA

1996-1998 postdoc - University of Colorado, Boulder, USA

1998-2000 postdoc - University of Leiden, the Netherlands

2000-2002 postdoc - DESY, Zeuthen, Germany

2002-2011 professor - University of Pecs, Hungary

2011- senior researcher - ATOMKI, Debrecen, Hungary

Santanu Mondal

2013 PhD - University of Calcutta, India

2013-2016 postdoc - Eotvos University, Hungary

2016- postdoc - National Chiao Tung University, Taiwan

Ferenc Pittler

2013 PhD - University of Pecs, Hungary

2013-2016 postdoc - Eotvos University, Budapest

2017- postdoc - Bonn University, Germany

Andras Saradi

2014 MSc - Eotvos University, Hungary

 

 

 

 

 

 

Balint Toth

2005-2006 research assistant - University of Wuppertal, Germany

2007 assistant lecturer - University of Pecs, Hungary

2010 PhD - Eotvos University, Hungary

2010- postdoc - University of Wuppertal, Germany

 

 

Csaba Torok

2017 PhD - Eotvos University, Hungary

2017- postdoc - Wuppertal University, Germany

 

Norbert Trombitas

PhD student

2015 PhD - Eotvos University, Hungary

 

 

Publications

Since it is tricky to locate all papers by a large number of people whose names are not unique on inspire, you can try various search queries:

Computing

Our group has access to a number of high performance computer installations in Europe and also maintains several PC and GPU clusters on site in Budapest.

Our primary resource is a 128 node cluster with two NVIDIA GTX 275 cards in each node, hosted in Budapest. There is also a 60 node cluster with one NVIDIA GTX 8800 card per node.

In addition we also have access to the Juropa cluster and the BlueGene/P installation in Forschungszentrum Juelich, Germany.

Our collaboriation with the University of Wuppertal, Germany also allows us to use several PC and GPU clusters there.



For visitors

You will most likely stay at the Peregrinus hotel in the downtown area of Pest.

The simplest way to get to/from your hotel from/to the airport is by taxi. The fare should be around 30 euros. Uber also works in Budapest :)

Our department is on the Buda side of the Danube very close to the Petofi Bridge and it is about a 30-35 minutes walk from the hotel:

You exit your hotel, walk past the Great Market Hall (definitely worth a closer look if you have about half an hour or an hour!) and the Corvinus University, cross the Danube on the Szabadsag Bridge and walk South. You will pass the Budapest University of Technology and the Petofi Bridge and our building will be a redish seven-story building on the right. The Department of Theoretical Physics is on the first floor on the Danube facing side of the building: